Доступ предоставлен для: Guest
Computational Thermal Sciences: An International Journal

Выходит 6 номеров в год

ISSN Печать: 1940-2503

ISSN Онлайн: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

STUDY OF CONSERVATION APPLIED TO POINT-IMPLICIT INTEGRATION TECHNIQUES FOR UNSTRUCTURED FINITE VOLUME NAVIER−STOKES SOLVERS

Том 7, Выпуск 1, 2015, pp. 65-79
DOI: 10.1615/ComputThermalScien.2015010454
Get accessGet access

Краткое описание

The work is a study of conservation on linearization techniques of time-marching schemes for the unstructured finite volume Reynolds-averaged Navier−Stokes formulation. The solver used in this work calculates the numerical flux applying an upwind discretization based on the flux vector splitting scheme. This numerical treatment results in a very large sparse linear system. The direct solution of this full implicit linear system is very expensive and, in most cases, impractical. There are several numerical approaches which are commonly used by the scientific community to treat sparse linear systems, and the point-implicit integration was selected in the present case. However, numerical approaches to solve implicit linear systems can be nonconservative in time, even for formulations which are conservative by construction, as the finite volume techniques. Moreover, there are physical problems which strongly demand conservative schemes in order to achieve the correct numerical solution. The work presents results of numerical simulations of closed domain concerning the evaluation of the mass conservation on implicit and explicit time-marching methods using constant and variable time steps. The explicit integration, with the use of a constant time step all over the domain, has preserved the conservative characterist of the finite volume formulation whereas the point-implicit integration requires numerical treatement in order to avoid such nonconservation issues.

Статьи, принятые к публикации

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain