Доступ предоставлен для: Guest
Computational Thermal Sciences: An International Journal

Выходит 6 номеров в год

ISSN Печать: 1940-2503

ISSN Онлайн: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

EVALUATION OF THE NEUTRONIC FEEDBACK EFFECTS IN LOSS OF COOLANT ACCIDENT SIMULATION OF THE IPR-R1 TRIGA REACTOR

Том 11, Выпуск 3, 2019, pp. 243-254
DOI: 10.1615/ComputThermalScien.2018019423
Get accessGet access

Краткое описание

The safety analysis of research reactors includes simulations of selected cases classified by the International Atomic Energy Agency (IAEA), since the simulations are performed using validated nodalizations and internationally recognized, accepted, and validated best estimate codes. The thermal hydraulic analysis is considered as an essential aspect in the study of safety of nuclear reactors, since it can predict proper working conditions, steady state and transient, thereby ensuring the safe operation of a nuclear reactor. A RELAP5 model verified for the IPR-R1 TRIGA research reactor was used here to perform transient studies. A loss of coolant accident (LOCA) event was simulated. The obtained results demonstrate that, to more realistically simulate this type of transient, it is necessary to consider also the neutronic feedback effects in the thermal hydraulic calculations.

ЛИТЕРАТУРА
  1. Dalle, H.M., Simulacao do Reator TRIGA IPR-R1 Utilizando Metodos de Transporte por Monte Carlo, PhD, Faculdade de Engenharia Quımica, Universidade Estadual de Campinas, Brasil, 2005.

  2. Dalle, H.M., Pereira, C., and Souza, R.M.G.P., Neutronic Calculation to the TRIGA IPR-R1 Reactor using the WIMSD4 and CITATION Codes, Ann. Nucl. Energy, vol. 29, pp. 901–912, 2002.

  3. Deen, J.R. and Woodruff, W.L., WIMS-ANL User Manual, Argonne National Laboratory Argonne, IL, 2004.

  4. Downar, T., Xu, Y., Seker, V., and Carlson, D., PARCS v 2.7 U.S. NRC Core Neutronics Simulator, User Manual, School of Nuclear Engineering, Purdue University, 2006.

  5. Duderstadt, J.J. and Hamilton, L.J., Nuclear Reactor Analysis, New York: John Wiley & Sons, Inc., 1976.

  6. General Atomics Company, Safeguards Summary Report for the New York University TRIGA Mark I Reactor, Tech. Report, GA- 9864, San Diego, CA, 1970.

  7. Hamidouche, T. and Si-Ahmed, El-K., Analysis of Loss of Coolant Accident in MTR Pool Type Research Reactor, Prog. Nucl. Energy, vol. 53, pp. 285–289, 2011.

  8. IAEA—International Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series, Tech. Report, no. NS-R-4, IAEA, Vienna, 2005.

  9. Mesquita, A.Z., Rezende, H.C., and Souza, R.M.G.P., Thermal Power Calibrations of the IPR-R1 TRIGA Nuclear Reactor, COBEM 2009, Proc. 20th Intl. Congress Mech. Eng., Gramado, Brazil, November 15–20, 2009.

  10. ORNL, WIMSD-5B, RSICC Computer Code Collection WIMSD-5B.12 - Deterministic Code System for Reactor-Lattice Calculations, Oak Ridge National Laboratory, 2007.

  11. Reis, P.A.L., Estudos Neutronicos e Termo-Hidraulicos para o Desenvolvimento de uma Metodologia de Acoplamento entre Codigos Aplicada ao Reator de Pesquisa TRIGA IPR-R1, PhD, Nuclear Engineering Department, Universidade Federal de Minas Gerais, Brasil, 2013.

  12. Reis, P.A.L., Costa, A.L., Pereira, C., Veloso, M.A.F., Mesquita, A.Z., Soares, H.V., and Barros, G.P., Assessment of a RELAP5 Model for the IPR-R1 TRIGA Research Reactor, Ann. Nucl. Energy, vol. 37, pp. 1341–1350, 2010.

  13. Reis, P.A.L., Costa, A.L., Pereira, C., Silva, C.A.M., Veloso, M.A.F., and Mesquita, A.Z., Sensitivity Analysis to a RELAP5 Nodalization Developed for a Typical TRIGA Research Reactor, Nucl. Eng. Design, vol. 242, pp. 300–306, 2012.

  14. Reis, P.A.L., Costa, A.L., Pereira, C., Veloso, M.A.F., Soares, H.V., and Mesquita, A.Z., Analysis of an Extreme Loss of Coolant in the IPR-R1 TRIGA Reactor using a RELAP5 Model, Engenharia Termica (Thermal Engineering), vol. 12, pp. 46–50, 2013.

  15. Reis, P.A.L., Costa, A.L., Pereira, C., Veloso, M.A.F., Scari, M.E., Miro, R., and Verdu, G., Transient Cases Analyses of the TRIGA IPR-R1 using Thermal Hydraulic and Neutrons Kinetic Coupled Codes, INAC 2015, Proc. Intl. Nucl. Atlantic Conf., Sao Paulo, Brazil, October 4–9, 2015.

  16. Silva, C.A.M., Salome, J.A.D., Guerra, B.T., Pereira, C., Costa, A.L., Veloso, M.A.F., Menezes, M.A.B.C., and Dalle, H.M., Sensitivity Analysis of TRIGA IPR-R1 Reactor Models using the MCNP Code. Int. J. Nucl. Energy, vol. 2014, pp. 1–9, 2014.

  17. Simnad, M.T., The U-ZrHx Alloys: Its Properties and Use in TRIGA Fuel, Nucl. Eng. Design, vol. 64, pp. 403–422, 1981.

  18. Simnad,M.T., Foushee, F.C., and West, G.B., Fuel Elements for Pulsed TRIGA Research Reactors, Nucl. Technol., vol. 28, pp. 31– 56, 1976.

  19. Souza, R.M.G.P. and Rezende, M.F.R., Power Upgrading Tests of the TRIGA IPR-R1 Nuclear Reactor to 250 KW, Proc. 2nd World TRIGA Users Conf., Atominstitute, Vienna, September 15–18, 2004.

  20. Souza, R.M.G.P., Thermal Neutron Flux Measurements in the Irradiation Facilities of the IPR-R1 TRIGA Reactor, Proc. 3rd World TRIGA Users Conf., Belo Horizonte, Brazil, August 22–25, 2006.

  21. US NRC—United States National Regulatory Commission, RELAP5/Mod3.3 Code Manuals, Idaho National Engineering Laboratory, 2001.

  22. Veloso, M. A., Avaliacao Termo-Hidraulica do Reator TRIGA IPR-R1 a 250 kW. CDTN/CNEN, Internal Tech. Report, Nota Interna, NI-EC3-05/05, 2005.

  23. Veloso, M.A.F., Analise Termofluidodinamica de Reatores Nucleares de Pesquisa Refrigerados a Agua em Regime de Conveccao Natural, PhD, Universidade Estadual de Campinas, Sao Paulo, Brasil, 2004.

  24. Wallace, W.P. and Simnad, M.T., Metallurgy of TRIGA Fuel Elements, General Atomics, Tech. Report, San Diego, CA, GA-1949, 1961.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain