Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2012004599
pages 37-56

SIMULATION ON MOTION OF A GROUP OF CHARGED DROPLETS IN AN ELECTROSTATIC SPRAY PROCESS

Jun Zhang
Cleaning Combustion and Energy Utilization Research Center of Fujian Province, School of Mechanical Engineering, Jimei University, China
Hongzhou He
Cleaning Combustion and Energy Utilization Research Center of Fujian Province, School of Mechanical Engineering, Jimei University, China

Краткое описание

Considering the droplet size and charge distributions, breakup length of the charged jet, electrical interaction between droplets, and especially, the variation of droplet number with time, the two-dimensional motion is simulated for a group of charged droplets continuously generated in an electrostatic spray process. The droplet spatial distributions obtained from simulation and from experiments are basically consistent. The simulation results show that the larger droplets move mainly in the central area of spray, while the smaller ones have a trend moving toward the edge area of spray. The results also show that the effect of the electrical interaction force between droplets on droplet motion is significant, and it cannot be ignored for cases with a fairly long distance from the capillary exit. In the area near the capillary exit, the electrical interaction force is very large and its direction also randomly changes during the droplet migration process. This leads to a significant fluctuation in the droplet velocity curve. With the increase of distance from the capillary exit, the electrical interaction force becomes small and relatively regular. This causes the droplet velocity and trajectory curves to gradually become smooth. In comparison, the curves of velocity and trajectory for large droplets are smoother than those for small droplets. In addition, droplet concentration, axial and radial velocity distributions, as well as the forces on the droplet are also obtained, and some local behaviors of droplet motion are revealed.


Articles with similar content:

CHARACTERISTICS OF AN ACOUSTICALLY MODULATED SPRAY ISSUED FROM CIRCULAR AND ELLIPTICAL ORIFICE NOZZLES
Atomization and Sprays, Vol.16, 2006, issue 3
Sumanta Acharya, T. Messina
LARGE EDDY SIMULATION OF FLUID INJECTION UNDER TRANSCRITICAL CONDITIONS: EFFECTS OF PSEUDOBOILING
Heat Transfer Research, Vol.48, 2017, issue 17
Maozhao Xie, Wu Wei, Ming Jia
Molecular Dynamics Investigation on the Wetting Process of Liquid Droplet on a Solid Surface
International Heat Transfer Conference 15, Vol.29, 2014, issue
Donatas Surblys, Koji Kuroda, Tadashi Nakajima, Hideo Fujimura, Yasutaka Yamaguchi, Masaru Kagawa, Shogo Nishida, Eisuke Arakaki
EXPERIMENTAL INVESTIGATION OF DYNAMICS AND ATOMIZATION OF A LIQUID FILM FLOWING OVER A SPINNING DISK
Atomization and Sprays, Vol.23, 2013, issue 7
Martin Freystein, Tatiana Gambaryan-Roisman, Peter Stephan, T. Borsdorf
A Nonclassical Reddy-Levinson Beam Model Based on a Modified Couple Stress Theory
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 2
J. N. Reddy, Xin-Lin Gao, H. M. Ma