Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i7.60
pages 791-806

IMPACT WAVE-BASED MODEL OF IMPINGING JET ATOMIZATION

William E. Anderson
315 N. Grant Street, Purdue University, West Lafayette, IN 47907
Harry M. Ryan, III
NASA, Stennis Space Center, MS 39529
Robert J. Santoro
Propulsion Engineering Research Center and Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Краткое описание

Previous studies of impinging jet atomizers indicated that “impact waves” may dominate the atomization of high-speed turbulent impinging jets. An experiment was conducted to characterize the formation and effects of impact waves on the atomization process. The model flow consisted of opposed turbulent water jets at atmospheric conditions. The impact waves are formed with a characteristic wavelength of about one jet diameter, and the distance between the waves was found to increase with distance from the impingement point due to wave merging, which helps explain discrepancies reported in the previous studies. A computational study of the flow structure around the stagnation point showed that the effects of impingement extend about one jet diameter upstream and that maximum gradients and incipient disruption of the surface occur at a normalized radius of 1.2, where an inflection in the jet flow from predominantly axial to predominantly radial occurs. Using these observations and measurements, and existing correlations for breakup length and drop size, a three-step phenomenological model of atomization (impact wave formation and propagation, sheet breakup into ligaments, and ligament disintegration into drops) was developed.


Articles with similar content:

COMPARISONS OF SPRAYING STRUCTURE AND ROCK BREAKAGE CHARACTERISTICS OF ROUND STRAIGHT, SWIRLING, AND STRAIGHT−SWIRLING INTEGRATED JETS
Atomization and Sprays, Vol.23, 2013, issue 4
Lei Wang, Desong Wu, Hualin Liao, Lihong Zhu
ANALYSIS OF PRESSURE SWIRL AND PURE AIRBLAST ATOMIZATION
Atomization and Sprays, Vol.1, 1991, issue 2
A. J. Przekwas, Chien-Pei Mao, S. G. Chuech
EXPERIMENTAL INVESTIGATION OF THE DROP SIZE DISTRIBUTION OF SPRAYS PRODUCED BY A LOWVELOCITY NEWTONIAN CYLINDRICAL LIQUID JET
Atomization and Sprays, Vol.11, 2001, issue 3
Helene Malot, Christophe Dumouchel
MODELING ATOMIZATION PROCESSES OF PRESSURE-SWIRL HOLLOW-CONE FUEL SPRAYS
Atomization and Sprays, Vol.7, 1997, issue 6
Rolf D. Reitz, Scott E. Parrish, Zhiyu Han, Patrick V. Farrell
DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS
Atomization and Sprays, Vol.20, 2010, issue 4
Heinz Pitsch, Olivier Desjardins