Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i2.20
pages 135-155

CONTROLLING LIQUID JET BREAKUP WITH PRACTICAL PIEZOELECTRIC DEVICES

Mina Rohani
Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
Deanna Kristine Iobbi
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
Derek Dunn-Rankin
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
Faryar Jabbari
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

Краткое описание

Based on Rayleigh's linear theory of capillary jets, a single unstable disturbance applied to the surface of a jet grows exponentially until it breaks the jet into droplets. In practice, however, droplet generators apply multiple-frequency perturbations on the surface of the jet, thereby causing unintended surface wave propagation. This phenomenon can occur in a frequency range where the disturbance components with different wavenumbers compete with each other for breakup. In this article, we study the interaction of disturbance modes and explore the opportunity for managing these structural influences. The goal is to suppress the resonance effects to control droplet size and spacing over a wide range of frequencies. By creating an input/output model that represents the actuator and solving an inverse problem, we can determine the input signals capable of yielding a single-frequency driving perturbation. We also present experimental results that demonstrate the feasibility of producing uniform droplets using a composite input signal.


Articles with similar content:

MODELING THE BREAKUP OF LIQUID JETS SUBJECTED TO PURE AND COMPOSITE DISTURBANCES
Atomization and Sprays, Vol.22, 2012, issue 7
Sadegh Dabiri, Faryar Jabbari, Mina Rohani, Derek Dunn-Rankin
WATER-IN-AIR DROPLET GENERATION IN A T-JUNCTION GEOMETRY
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.7, 2018, issue
S. Seo, M. Mastiani, Myeongsub (Mike) Kim
TAILORED LIQUID JET ATOMIZATION
Atomization and Sprays, Vol.18, 2008, issue 4
D. R. Woods, Sung P. Lin
PRODUCTION OF HIGHLY UNIFORM SOLDER SPHERES USING A DIGITAL INTEGRAL CONTROL SCHEME
Atomization and Sprays, Vol.9, 1999, issue 6
Jung-Hoon Chun, Juan C. Rocha
APPLICATION OF TRANSIENT HOT WIRE METHOD TO MEASURE THERMAL CONDUCTIVITY OF A CONDUCTIVE MEDIUM
International Heat Transfer Conference 7, Vol.10, 1982, issue
Y. Kurosaki, M. Suzuki, M. Take-uchi, K. Nagata