Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017017448
pages 303-317

ANALYSIS METHODS FOR DIRECT NUMERICAL SIMULATIONS OF PRIMARY BREAKUP OF SHEAR-THINNING LIQUID JETS

Moritz Ertl
Institute of Aerospace Thermodynamics, University of Stuttgart, 70569 Stuttgart, Germany
Bernhard Weigand
Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, Stuttgart 70569, Germany

Краткое описание

The goal of this work is to improve our understanding of the primary breakup of jets from shear-thinning non-Newtonian liquids. We use direct numerical simulations (DNS) with the volume of fluid method for tracking of the liquid phase and piecewise linear interface calculations for a sharp interface reconstruction. We calculate the shear-thinning viscosity with the Carreau-Yasuda model. We use the inflow velocity profile as well as the shear-thinning properties as varying parameters for different simulations. Different methods of investigation are presented and applied to the simulations. We visualize and describe the influence of shear-thinning viscosity on the breakup process. We quantify the breakup over the liquid surface area and show the influence of different inflow velocities and different shear-thinning viscosities on the breakup. The investigation is refined by analyzing quantities, which define the deformation of the jet surface. A new visualization method is used to track the temporal development of liquid mass. With these methods for analysis we lay a foundation to quantitatively compare different destabilizing parameters and to estimate droplet sizes resulting from the breakup. The combination of these analysis helps to provide a better understanding of shear-thinning breakup in general and brings us closer to predicting resulting droplet sizes.


Articles with similar content:

CHARACTERIZATION OF TRAJECTORY, BREAK POINT, AND BREAK POINT DYNAMICS OF A PLAIN LIQUID JET IN A CROSSFLOW
Atomization and Sprays, Vol.21, 2011, issue 3
U. M. Mondragon, Q. Wang, C. T. Brown, Vincent McDonell
MARANGONI-IMPROVED MIXING IN A TWO-DROPLET SYSTEM
Interfacial Phenomena and Heat Transfer, Vol.5, 2017, issue 1
Mathieu Sellier, Vi-Vie Ng, Volker Nock
A CONSERVATIVE FRAMEWORK FOR PRIMARY ATOMIZATION COMPUTATION AND APPLICATION TO THE STUDY OF NOZZLE AND DENSITY RATIO EFFECTS
Atomization and Sprays, Vol.23, 2013, issue 12
Vincent Le Chenadec, Heinz Pitsch
DIRECT SIMULATIONS OF LIQUID SHEET BREAKUP IN PLANAR GAS BLAST ATOMIZATION
Atomization and Sprays, Vol.27, 2017, issue 2
Rajesh Reddy , Raja Banerjee
HIGH-FIDELITY SIMULATIONS OF IMPINGING JET ATOMIZATION
Atomization and Sprays, Vol.23, 2013, issue 12
Vigor Yang, Stephane Popinet, Dongjun Ma, Xiaodong Chen