Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i5.60
pages 453-465

DIESEL SPRAY BEHAVIOR AT COMPRESSION RATIOS UP TO 100:1

Matt N. Svrcek
Department of Mechanical Engineering, Stanford University, USA
S. L. Miller
Department of Mechanical Engineering, Stanford University, USA
Christopher F. Edwards
Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

Краткое описание

Increasing the compression ratio of a simple-cycle engine beyond 100:1 can enable first law efficiency approaching 60% if losses relative to the ideal cycle can be maintained similar to existing engines. Achieving this in practice will require understanding and managing the combustion process in the unique environment that results from such a high compression ratio. As a first step, this paper examines the behavior of combusting and noncombusting single-plume diesel sprays in a free-piston, extreme-compression device for compression ratios ranging from 30:1 to 100:1. High-speed schlieren photography through full bore optical access in the end wall of the combustor provides imaging of the spray. Spray penetration and dispersion (via spray angle) are measured as functions of time for each compression ratio, for both nonreacting and reacting sprays. For the combusting-spray experiments, ignition delay based on OH luminosity is also recorded via a high-sensitivity photodiode. A separate set of experiments using a diffuse back-illumination method provides measurements of penetration of the liquid phase spray region as a function of time and compression ratio. The results of this study are shown to be in general agreement with the current understanding of spray behavior as a function of parameters such as gas density, even when extended to this new regime. However, the steep free-piston motion profile results in density conditions varying greatly during the course of injection at the higher compression ratios, which in turn affects the spray penetration and spreading. Furthermore, a significant effect of in-cylinder fluid motion on the spray is observed. This effect becomes stronger at the higher compression ratios, likely due to the ratio of ambient density to spray density becoming low.

Ключевые слова: diesel, spray, combustion, compression ratio, free piston

Articles with similar content:

NEAR FIELD VISUALIZATION OF DIESEL SPRAY FOR DIFFERENT NOZZLE INCLINATION ANGLES IN NON-VAPORIZING CONDITIONS
Atomization and Sprays, Vol.27, 2017, issue 3
Alberto Viera, Raul Payri, Pedro Marti-Aldaravi, Gabriela Bracho
INVESTIGATION OF THE CHARACTERISTICS OF FUEL ADHESION FORMED BY SPRAY/WALL INTERACTION UNDER DIESEL PREMIXED CHARGE COMPRESSION IGNITION (PCCI) RELEVANT CONDITIONS
Atomization and Sprays, Vol.25, 2015, issue 11
Maozhao Xie, Hong Liu, Ming Jia, Yanzhi Zhang, Tianyou Wang
THE CHARACTERISTICS OF POSTIMPINGEMENT DIESEL SPRAY, PART I: PENETRATION AND VOLUME
Atomization and Sprays, Vol.12, 2002, issue 4
Masataka Arai, Kyungnam Ko
QUANTITATIVE ANALYSES OF FUEL SPRAY-AMBIENT GAS INTERACTION BY MEANS OF LIF-PIV TECHNIQUE
Atomization and Sprays, Vol.21, 2011, issue 6
Olawole Abiola Kuti, Keiya Nishida, Jingyu Zhu, Seoksu Moon
EXPERIMENTAL STUDY ON INJECTION AND MACROSCOPIC SPRAY CHARACTERISTICS OF ETHYL OLEATE, JET FUEL, AND THEIR BLEND ON A DIESEL ENGINE COMMON RAIL SYSTEM
Atomization and Sprays, Vol.25, 2015, issue 9
Dong Han, Zhen Huang, Pengfei Li, He Lin, Chunhai Wang, Yaozong Duan