Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i7.10
pages 565-579

SINGLE-PHASE AERODYNAMIC FLOW FIELD VALIDATION OF NOVEL AIRBLAST ATOMIZER DESIGNS

Martin L. Burby
Spray Research Group (SRG), Institute of Materials Research (IMR), School of Computing, Science and Engineering (CSE), University of Salford, Manchester M5 4WT, UK
Ghasem G. Nasr
Spray Research Group (SRG), Insititute of Materials Research (IMR), School of Computing, Science and Engineering, University of Salford, Manchester, UK
Andrew J. Yule
Spray Research Group (SRG), Insititute of Materials Research (IMR), School of Computing, Science and Engineering, University of Salford, Manchester, UK; Thermofluids Division, Department of Mechanical Engineering, UMIST
Leigh Morgan
Unison Engine Components, Burnley, UK

Краткое описание

Airblast atomizers are used extensively in aero gas turbine engines. In the pursuit of reducing emissions and increasing fuel efficiency a novel airblast atomizer design is being developed that is capable of variable fuel-placement. Such a design will create two independently fuelled zones, a pilot and a main that can be optimised for fuel efficiency, emissions and stability throughout the flight envelope. The airflow and spray structure of three designs have been investigated experimentally using Phase Doppler Anemometry (PDA) to determine the size and direction of their respective recirculation regions. The experiments were performed isothermally and under atmospheric conditions. Axial air velocity profiles were obtained at a number of radial and axial positions downstream of the injectors. Findings show that all three devices have two independently fuelled regions and two of the devices have very similar flow structures despite their geometrical differences. The three airblast atomizers were also modelled using the commercial Computational Fluid Dynamics package (CFD) CFX. The devices were modelled isothermally in order to validate the CFD models using the PDA data. Qualitatively the CFD captured the flow profiles for the three devices, and there was also good quantitative agreement especially in the downstream regions for two of the devices.

Ключевые слова: atomization, CFD, combustion, gas turbine, injector, PDA

Articles with similar content:

Blockage Effect of the Centrifugal Cooling Fans
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Chien-An Chou, Zeng-Hwa Yang, Chun-Wei Sun, Fu-Sheng Chuang, Sheam-Chyun Lin
VORTICES ORGANIZATION IN THE NEAR FIELD OF A JET ISSUING NORMALLY INTO A CROSSFLOW
Journal of Flow Visualization and Image Processing, Vol.5, 1998, issue 1
L.-E. Brizzi, E. Foucault, J.-L. Bousgarbies
EFFECTS OF ACCESS OF SECONDARY AIR ON OPERATION OF AN ATMOSPHERIC BURNER
International Journal of Energy for a Clean Environment, Vol.12, 2011, issue 1
Dimosthenis Trimis, Goran Mrazic, Franz von Issendorff, Sabine Ausmeier, Ana Zbogar-Rasic
GEOMETRIC EFFECTS ON SPRAY CONE ANGLE FOR PLAIN-ORIFICE ATOMIZERS
Atomization and Sprays, Vol.1, 1991, issue 3
Arthur H. Lefebvre, Dwight W. Senser, T. R. Ohrn
Turbulent flow measurements within a screw compressor
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Ian K. Smith, Nikola Stosic, D. Guerrato, J. M. Nouri, C. Arcoumanis