Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v18.i2.30
pages 163-190

MICROMACHINED ULTRASONIC ATOMIZER FOR LIQUID FUELS

J. M. Meacham
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
M. J. Varady
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
D. Esposito
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
F. L. Degertekin
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
Andrei G. Fedorov
Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Parker H. Petit Inst. for Bioengineering and Bioscience, USA

Краткое описание

A micromachined ultrasonic droplet generator is demonstrated for atomization of liquids for fuel processing. The device comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the fuel, and a silicon micromachined array of liquid horn structures as the ejection nozzles. Since one piezoelectric actuator can drive multiple ejectors of a single array, the array size can be scaled to meet flow rate requirements for higher power applications. Furthermore, due to the planar configuration of the ejector array, it is ideally suited for integration with the planar design of fuel cells. Simulations of the harmonic response of the atomizer confirm that operation at cavity resonances and the use of acoustic wave focusing yield low power consumption. Device operation is demonstrated through atomization of water and methanol from 4.5 to 16 μm diameter orifices at multiple frequencies between 0.5 and 2.5 MHz. The results of high-spatial-resolution visualization experiments combined with a scaling analysis of the fluid mechanics provide a basic understanding of the physics governing the ejection process and allow for a comparison of device operation with different fuels. A high degree of control of the atomization process and highly uniform atomization at low flow rates are achieved with a device that is extremely simple to fabricate, assemble, and operate.


Articles with similar content:

DESIGN AND FABRICATION OF THE PIEZOELECTRIC ACTUATED AIR FORCED CONVECTION THERMAL MANAGEMENT AND APPLICATION TO HIGH POWER LED COOLING
Second Thermal and Fluids Engineering Conference, Vol.13, 2017, issue
Chiang-Ho Cheng, An-Shik Yang, Ming-Yu Lai
DEVELOPMENT OF THE TRANSMITTING AND RECEIVING CHANNELS FOR TERAHERTZ BAND RELAY SYSTEMS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 11
S.Ye. Kuzmin, O. V. Lutchak, Mikhail E. Ilchenko, T. M. Narytnyk, B.M. Radzikhovsky
MULTIPLE SCATTERING SUPPRESSION IN PLANAR LASER IMAGING OF DENSE SPRAYS BY MEANS OF STRUCTURED ILLUMINATION
Atomization and Sprays, Vol.20, 2010, issue 2
Elias Kristensson, Mattias Richter, Marcus Aldén
INEXPENSIVE AIR-ASSIST ATOMIZATION FROM 80,000 ORIFICES
Atomization and Sprays, Vol.16, 2006, issue 7
Steven Collicott, Thomas J. Hoverman
Characterization of Valveless Piezoelectrically-Actuated Micropumps with Novel Diffuser Elements
International Heat Transfer Conference 15, Vol.49, 2014, issue
Jason Stafford, Leicester Ehrlich, Nicholas Jeffers, J. Punch