Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v18.i2.20
pages 129-162

MULTIDIMENSIONAL SIMULATION OF CAVITATING FLOWS IN DIESEL INJECTORS BY A HOMOGENEOUS MIXTURE MODELING APPROACH

Chawki Habchi
IFP Energies Nouvelles, let 4 Avenue de Bois-Preau, 92852 Rueil-Malmaison, France
Nicolas Dumont
PSA Peugeot Citroen, 18 rue des Fauvelles 92250 La Garenne Colombes, France
Olivier Simonin
Institut de Mecanique des Fluides de Toulouse, IMFT, Universite de Toulouse, CNRS - Toulouse, FRANCE

Краткое описание

Because of intense flow recirculations and strong local depression, cavitation occurs in high-pressure Diesel injectors. Because experiments are very difficult to perform for injection conditions (small length and time scales, high-speed flow, etc.), multidimensional modeling seems to be an appropriate tool in order to better understand the flow features inside and at the exit of the injector nozzle. The purpose of this paper is to present the application of the homogeneous equilibrium modeling (HEM) approach for the simulation of cavitating flows inside a Diesel multihole injector. The validation of the model for typical cavitating flow configurations is presented. The HEM approach allows one to reproduce different cavitation regimes observed experimentally. Indeed, numerical results obtained on a simplified injector [7] agree well with experimental visualizations of cavitation and multiple flow fields. Also, the computed steady-state discharge coefficients of a single hole injector are close to the measured values. Furthermore, numerical results reproduce qualitatively the experimental images of cavitation. Finally, computations of cavitating flows in a six-hole narrow-angle Diesel injector, taking into account the needle displacement, are discussed. It is shown that transient injector exit conditions (i.e., fluid velocity at the injector exit, void fraction, cone angle, etc.) are mainly due to the cavitation collapse especially, during the opening and closing of the injector needle. Therefore, transient computational fluid dynamics code boundary conditions have to be taken into account to improve spray atomization and combustion modeling.


Articles with similar content:

EXPERIMENTAL INVESTIGATIONS ON A PIEZO-ACTIVATED HOLLOW CONE INJECTOR − PART I: MEASUREMENT OF NEEDLE LIFT AND ITS INFLUENCE ON SPRAY MORPHOLOGY
Atomization and Sprays, Vol.24, 2014, issue 10
Graham Wigley, Konstantinos Boulouchos, B. Schneider, Andreas Schmid
EFFECTS OF NEEDLE LIFT AND FUEL TYPE ON CAVITATION FORMATION AND HEAT TRANSFER INSIDE DIESEL FUEL INJECTOR NOZZLE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Shadi Darvish, George S. Dulikravich, Sohail R. Reddy, S. M. Javad Zeidi
MODELLING OF PRIMARY BREAKUP PROCESS OF A GASOLINE DIRECT ENGINE MULTI-HOLE SPRAY
Atomization and Sprays, Vol.23, 2013, issue 10
Giuseppe Cantore, Simone Malaguti, Luigi Allocca, Alessandro Montanaro, Stefano Fontanesi
ANALYSIS OF TRANSIENT LIQUID AND VAPOR PHASE PENETRATION FOR DIESEL SPRAYS UNDER VARIABLE INJECTION CONDITIONS
Atomization and Sprays, Vol.21, 2011, issue 6
Raul Payri, Francisco J. Briceno, Jose M. Garcia-Oliver, Jose V. Pastor
NUMERICAL ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE DESIGN ON INTERNAL FLOW CHARACTERISTICS FOR 2-VALVE DIESEL ENGINE APPLICATION
Atomization and Sprays, Vol.23, 2013, issue 2
Joaquin De la Morena, Kshitij Neroorkar, Alejandro H. Plazas, David P. Schmidt, Richard C. Peterson