Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013008287
pages 41-80

DEVELOPMENT OF A NEW SPRAY/WALL INTERACTION MODEL FOR DIESEL SPRAY UNDER PCCI-ENGINE RELEVANT CONDITIONS

Yanzhi Zhang
School of Energy and Power Engineering, Dalian University of Technology, P. R. China
Ming Jia
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
Hong Liu
School of Energy and Power Engineering, Dalian University of Technology, P. R. China
Maozhao Xie
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian City, P.R. China
Tianyou Wang
State Key Laboratory of Engines, Tianjin University, 92 Weijin Road, Tianjin 300072, China
Lei Zhou
Center for Combustion Energy, Tsinghua University, P. R. China

Краткое описание

A new spray/wall interaction model was developed with special emphasis on the premixed charge compression ignition (PCCI) engine-relevant conditions, i.e., high injection pressure and intermediate-to-high backpressure. The new model distinguishes between dry wall and wetted wall for a description of the complicated spray/wall interaction process. The dry wall impingement regimes include deposition and splash, whereas the wetted wall regimes consist of stick, rebound, spread, and splash. The regime transition thresholds of splash are determined based on recent experimental observations, which can account for the wide ranges of conditions related to engines. By using an updated log-normal distribution function, the sizes of the secondary droplets are determined in the improved model, which is more suitable to describe the atomization process of the secondary droplets formed by splash. Moreover, the velocities of the secondary droplets are determined by a Nukiyama-Tanasawa distribution function derived from the experimental measurements, and the ejection angle of the secondary droplet is assumed to be in the interval (2°, 30°) uniformly, which is reasonable for high injection pressure. In order to validate the new spray/wall interaction model, comparisons of the predictions from the present model with the experimental measurements and predictions from a previous spray/wall interaction model were conducted. The results indicate that the numerical predictions from the new model illustrate better agreements with the experimental data than those of the previous model, especially in the case with high injection pressure under PCCI-engine relevant conditions.