Доступ предоставлен для: Guest
Atomization and Sprays
Editor-in-Chief Europe: Günter Brenn (open in a new tab)
Editor-in-Chief Americas: Marcus Herrmann (open in a new tab)
Редактор-основатель: Norman Chigier (open in a new tab)

Выходит 12 номеров в год

ISSN Печать: 1044-5110

ISSN Онлайн: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

TOPOLOGY AND DISTINCT FEATURES OF FLASHING FLOW IN AN INJECTOR NOZZLE

Том 26, Выпуск 12, 2016, pp. 1307-1336
DOI: 10.1615/AtomizSpr.2016016510
Get accessGet access

Краткое описание

The effect of thermodynamic non-equilibrium conditions (liquid superheat) on the two-phase flow field developing inside an axisymmetric, single-orifice nozzle is numerically investigated by means of different variations of a two-phase mixture model. A number of "hybrid" mass-transfer models that take into account both the effect of inertial forces (cavitation) and liquid superheat have been proposed and evaluated against widely used, pure-cavitation models, in order to pinpoint the flow conditions necessary for flash boiling to occur and to elucidate the distinct features of the phase and velocity fields that characterize flashing flows. The effect of the number of nucleation sites, required as an input by the models, on the developing two-phase flow has also been looked into. The numerical results have shown that incorporation of an additional term corresponding to liquid superheat into the mass-transfer rate leads to increased evaporation rate, compared to pure-cavitation models with liquid vaporization taking place within the entire nozzle cross section. The cavitation nucleation sites have been confirmed to act as the necessary flow perturbations required for flash boiling to occur. In addition, the developing velocity field has been found to be in close correlation to the mass-transfer rate imposed. It has been established that increased liquid evaporation leads to choked-flow conditions prevailing in a larger part of the nozzle and accompanied by a more significant expansion of the two-phase mixture downstream of the injector exit that results to increased jet cone angle. Finally, the results demonstrated that liquid cooling due to the increased mass-transfer rate is not significant within the nozzle and thus consider that a constant liquid temperature produces adequately accurate results with a decreased computational cost.

ЦИТИРОВАНО В
  1. Karathanassis I.K., Koukouvinis P., Gavaises M., Comparative evaluation of phase-change mechanisms for the prediction of flashing flows, International Journal of Multiphase Flow, 95, 2017. Crossref

  2. Ji Can, Cheng Lin, Wang Naihua, Liu Zhigang, Experimental investigation on high-pressure high-temperature spray flash evaporation and the characteristic Jakob number, Experimental Thermal and Fluid Science, 102, 2019. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain