Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015011058
pages 375-396

MORPHOLOGICAL EXPLORATION OF EMERGING JET FLOWS FROM MULTI-HOLE DIESEL INJECTORS AT DIFFERENT NEEDLE LIFTS

Seoksu Moon
Department of Mechanical Engineering, Inha University
Xusheng Zhang
Advanced Photon Source, Argonne National Laboratory, Argonne, USA; Merchant Marine College, Shanghai Maritime University, Shanghai, China
Jian Gao
Advanced Photon Source, Argonne National Laboratory, Argonne, USA; Propulsion Systems Research Lab., General Motors Global Research and Development, Warren, USA
Kamel Fezzaa
Advanced Photon Source, Argonne National Laboratory, Argonne, USA
Eric M. Dufresne
Advanced Photon Source, Argonne National Laboratory, Argonne, USA
Jin Wang
Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
Xingbin Xie
Department of Mechanical Engineering, Wayne State University, Detroit, USA
Fengkun Wang
Department of Mechanical Engineering, Wayne State University, Detroit, USA
Ming Chia Lai
Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202

Краткое описание

The current study takes a morphological approach to interpret the emerging jet flows from multi-hole diesel injectors. Several types of multi-hole injectors, a six-hole injector and two two-hole injectors with different needle control mechanisms, were used to investigate the emerging jet flows and related flow breakup at different needle lifts. A short X-ray pulse with 150 ps duration was used to visualize the nearfield morphologies of the emerging jet flows using an ultrafast X-ray phase-contrast imaging technique. A few X-ray pulses with 68 ns periodicity were also used to analyze the dynamics of the emerging jet flows by tracking the movement of the structures inside the spray. At first, the effects of needle lift on emerging flow pattern and breakup were investigated using a six-hole injector under practical injection conditions. A highly expanding spray was observed at the low needle lifts. The degree of flow expansion was however suppressed with an increase in the needle lift. The higher degree of flow expansion at the low needle lifts promoted the flow breakup and increased the spray deceleration rate with an increase in the axial distance. Then, a detailed morphological study of the emerging flows was performed using two-hole nozzles under low injection pressures to slow down the flow breakup in order to figure out the intrinsic nature of the emerging flows associated with the nozzle internal flow. The phase-contrast images revealed clear morphologies of several branching flows inside the spray having different flowing directions and stretching the spray three-dimensionally that originate from complex nozzle internal flow pattern. The degree of flow expansion associated with the branching flows appeared differently with the needle lift with formation of various flow structures: cone shaped, stretched thin, and cylindrical. At certain needle lifts, the branching flows sometimes formed a couple of microwavelets inside the spray having different instability frequencies, indicating different origins of each flow associated with nozzle internal flow. Increasing ambient gas density did not alter the branching characteristics of the flows significantly, while increasing injection pressure and reducing the fuel viscosity significantly altered the branching flow characteristics.


Articles with similar content:

INVESTIGATION OF RAPID ATOMIZATION AND COLLAPSE OF SUPERHEATED LIQUID FUEL SPRAY UNDER SUPERHEATED CONDITIONS
Atomization and Sprays, Vol.26, 2016, issue 12
Hujie Pan, David L. S. Hung, Tianyun Li, Min Xu, Shengqi Wu
A VISUALIZATION STUDY OF DUAL SPRAY INTERACTION OF A DUAL-ORIFICE FUEL INJECTOR AT LOW PRESSURE DROP
Journal of Flow Visualization and Image Processing, Vol.5, 1998, issue 1
Min Soo Yoon, Victor I. Yagodkin, Yeoung Min Han, Woo Seok Seol, Dae Sung Lee
INTERNAL AND NEAR-NOZZLE FLOW OF A PRESSURE-SWIRL ATOMIZER UNDER VARIED FUEL TEMPERATURE
Atomization and Sprays, Vol.17, 2007, issue 6
Jaejoon Choi, Essam Abo-Serie, Choongsik Bae, Seoksu Moon
EXPERIMENTAL INVESTIGATIONS ON A PIEZO-ACTIVATED HOLLOW CONE INJECTOR − PART II: THE INFLUENCE OF NEEDLE LIFT ON DROPLET SIZE DISTRIBUTIONS AND VORTEX FORMATION
Atomization and Sprays, Vol.24, 2014, issue 10
Graham Wigley, Konstantinos Boulouchos, B. Schneider, Andreas Schmid
FLOW-FIELD INVESTIGATION OF MULTIHOLE SUPERHEATED SPRAYS USING HIGH-SPEED PIV. PART II. AXIAL DIRECTION
Atomization and Sprays, Vol.23, 2013, issue 2
David J. Cleary, Ming Zhang, Yuyin Zhang, Min Xu, Gaomimg Zhang