Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i5.60
pages 563-578

EFFECT OF A FIRE PLUME ON SUPPRESSION SPRAY DROPLET MOTION

John A. Schwille
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
Richard M. Lueptow
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

Краткое описание

The effect of a fire on the droplets from suppression systems plays an important role in the physics of fire suppression. Particle image velocimetry (PIV) was used to measure the droplet velocities from two nozzles and afire sprinkler in the presence of fires ranging from 5 to 50 kW. Results show that the droplet velocity field is highly dependent on fire size, with droplets having generally slower downward velocities over large regions of the spray as the fire size increases. In some small regions, the fire plume results in a reversal of the droplet velocity, indicating that droplets are carried upward. For the 50-kW fire, the fire overwhelms the spray. Droplet trajectories, determined by tracking typical droplets' progression in the spray fields, show that droplets are blown sideways away from the fire plume. Droplet tracking also shows that droplet penetration into the fire plume decreases as fire size is increased. The penetration depends on the ratio of spray drag to plume momentum.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF THE ATOMIZATION CHARACTERISTICS OF ANTICORROSION WAX
Atomization and Sprays, Vol.23, 2013, issue 7
Sanghoon Lee, Sungwook Park
AN APPROACH TO MODELING FLASH-BOILING FUEL SPRAYS FOR DIRECT-INJECTION SPARK-IGNITION ENGINES
Atomization and Sprays, Vol.26, 2016, issue 12
Pavlos Aleiferis, Arash Hamzehloo, Christopher Price, David Richardson
AN ENGINEERING MODEL FOR THE FUEL SPRAY FORMATION OF DEFORMING DROPLETS
Atomization and Sprays, Vol.14, 2004, issue 4
Goodarz Ahmadi, William Kvasnak, David J. Schmidt
ATOMIZATION AND DISPERSION MEASUREMENTS IN FIRE SPRINKLER SPRAYS
Atomization and Sprays, Vol.19, 2009, issue 12
C. Do, Andre W. Marshall, Ning Ren, A. Blum
EXPERIMENTAL CHARACTERIZATION OF AN INTERMITTENT GASOLINE SPRAY IMPINGING UNDER CROSS-FLOW CONDITIONS
Atomization and Sprays, Vol.15, 2005, issue 2
Antonio L. N. Moreira, Miguel R. Oliveira Panão