Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2014008559
pages 495-524

INFLUENCE OF ATOMIZATION AND SPRAY PARAMETERS ON THE FLAME SPRAY PROCESS FOR NANOPARTICLE PRODUCTION

Dirceu Noriler
Chemical Engineering Department, University of Blumenau, Blumenau, Brazil
C. D. Rosebrock
IWT, University of Bremen, Bremen, Germany
L. Madler
IWT, University of Bremen, Bremen, Germany
H. F. Meier
Department of Chemical Engineering, Regional University of Blumenau, Rua Sao Paulo 3250, 89030-000 Blumenau SC
Udo Fritsching
Department of Particles and Process Engineering, University of Bremen; Foundation Institute of Materials Science, Badgasteiner Str. 3, D-28359 Bremen, Germany

Краткое описание

Within the Flame Spray Pyrolysis (FSP) process for nanoparticle production, the effects of the liquid atomization process and the spray properties on the spray flame structure were studied by means of experiments and numerical simulations. The influence of precursor concentration variations on the spray droplet size distribution was studied for two different FSP nozzles. The resulting spray has been characterized in terms of drop sizes and velocities by means of Laser Diffraction and Particle Image Velocimetry. A mathematical model was carried out considering two-way coupling between the gas phase and the droplets. For the combustion model, the eddy dissipation concept model was employed, taking into account the effects of the vaporization of the droplets, chemical reaction mechanisms, and the chemistry-turbulence interaction. Experimental and numerical results are compared to validate the model and to study the potential influence of significant spray parameters on the FSP process. With increasing fuel/precursor viscosity from 0.55 × 10−3 Pa.s to 3.72 × 10−3 Pa.s an increase of 48% in the Sauter Mean Diameter (SMD) has been found. Furthermore, a bimodal droplet size distribution was found for the larger fuel/precursor viscosities. Large droplets may directly affect the flame structure and morphology while leaving the flame without complete evaporation and subsequent reaction thus influencing the resulting particle size distribution.


Articles with similar content:

EULER/LAGRANGE CALCULATIONS OF TURBULENT SPRAYS: THE EFFECT OF DROPLET COLLISIONS AND COALESCENCE
Atomization and Sprays, Vol.10, 2000, issue 1
S. Hohmann, M. Ruger, Martin Sommerfeld, Gangolf Kohnen
EXPERIMENTAL AND NUMERICAL ANALYSIS OF SPRAY DISPERSION AND EVAPORATION IN A COMBUSTION CHAMBER
Atomization and Sprays, Vol.19, 2009, issue 10
Andreas Dreizler, Johannes Janicka, Amsini Sadiki, M. Hage, Mouldi Chrigui
COMPUTATIONAL STUDY OF ATOMIZATION AND FUEL DROP SIZE DISTRIBUTIONS IN HIGH-SPEED PRIMARY BREAKUP
Atomization and Sprays, Vol.28, 2018, issue 4
Luis Bravo, D. Kim, S. Su, F. Ham
INVESTIGATION OF MULTIPHASE PARTICLE IMAGE VELOCIMETRY USING MONTE CARLO SIMULATIONS
Atomization and Sprays, Vol.14, 2004, issue 6
Steve Gorman, John F. Widmann
TWO-PHASE FLOW CALCULATION OF REACTING AND NONREACTING, NONSWIRUNG, AIR-ASSISTED METHANOL SPRAYS
Atomization and Sprays, Vol.4, 1994, issue 3
Anil Tolpadi