Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015012552
pages 219-233

PHOSPHORESCENT FLOW TRACKING FOR QUANTITATIVE MEASUREMENTS OF LIQUID SPRAY DISPERSION

Dennis D. van der Voort
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
B. C. S. de Ruijter
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
W. van de Water
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
N. J. Dam
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Herman J. H. Clercx
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
G. J. F. van Heijst
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Краткое описание

This work presents a new technique that enables visualization of the breakup and tracking of the dispersion of a fuel spray in the near-field of the nozzle by means of a phosphorescent tracer. It exclusively visualizes the liquid phase, without interference of the vapor phase. The phosphorescence properties of the dissolved Eu-TTA-TOPO complex are compared for different solutions, including engine-relevant surrogate fuels. A method of internal nozzle excitation is presented, which, when applied to water and heptane-based solutions shows the breakup regime, ligament development, and droplet separation. Laser sheet excitation immediately downstream of the nozzle exit is shown to enable the tracking of dispersion and the determination of the fluid velocity of the tagged fluid volume. The results show an increase in both radial and longitudinal width of the fluid parcels with the distance from the nozzle exit for both the water and heptane solution, depending on the properties of the fluid and its velocity. A variation between the breakup of individual fluid parcels was observed and characterized by tracking dispersion on each breakup sequence. The method is shown to qualitatively measure spray breakup, and to provide unique quantitative information on the dispersion of liquid in sprays.


Articles with similar content:

Geometric Primary Atomization Characteristics in an Airblast Atomizer, High Pressure Conditions
Atomization and Sprays, Vol.21, 2011, issue 1
P. Berthoumieu, G. Lavergne, Vital Gutierrez Fernandez
TEMPERATURE MEASUREMENTS IN POLYDISPERSE SPRAYS BY MEANS OF LASER-INDUCED FLUORESCENCE (LIF) ON THREE SPECTRAL BANDS
Atomization and Sprays, Vol.16, 2006, issue 6
M. Bruchhausen, D. Blondel, Fabrice Lemoine, A. Delconte
INVESTIGATION OF MASS TRANSFER ON MACRO- AND MICROSCALE BETWEEN AN INJECTED DYES MIXTURE AND A BULK FLUID
International Heat Transfer Conference 13, Vol.0, 2006, issue
L. Volpe, Dieter Mewes
LASER BASED QUANTITATIVE IMAGING OF AIR ENTRAINMENT INTO EVAPORATING DIESEL SPRAY
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Keiya Nishida, H. Hiroyasu, M. Suzuki
THE EFFECT OF INITIAL AMBIENT TURBULENCE LEVELS ON ISO-OCTANE INJECTION SPRAYS
Atomization and Sprays, Vol.21, 2011, issue 10
H. M. Thompson, P. H. Gaskell, Malcolm Lawes, I. Elbadawy