Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v15.i3.30
pages 295-322

MODELING THE INITIAL DROPLET SIZE DISTRIBUTION IN SPRAYS BASED ON THE MAXIMIZATION OF ENTROPY GENERATION

Xianguo Li
University of Waterloo
Meishen Li
Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Huijuan Fu
Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Краткое описание

The maximum entropy principle (MEP), which has been popular in the modeling of droplet size and velocity distribution in sprays, is, strictly speaking, only applicable for isolated systems in thermodynamic equilibrium; whereas the spray formation processes are irreversible and nonisolated with interaction between the atomizing liquid and its surrounding gas medium. Consequently, the MEP-based distributions show various degrees of discrepancies when compared with various experimental data. In this study, a new model for the droplet size distribution has been developed based on the thermodynamically consistent concept—the maximization of entropy generation during the liquid atomization process. The model prediction compares favorably with the experimentally measured size distribution for droplets produced by an air-blast annular nozzle and near the liquid bulk breakup region. Therefore, the present model can be used to predict the initial droplet size distribution in sprays.


Articles with similar content:

X-RAY RADIOGRAPHY MEASUREMENTS OF CAVITATING NOZZLE FLOW
Atomization and Sprays, Vol.23, 2013, issue 9
Daniel Duke, Andrew B. Swantek, Alan Kastengren, Christopher F. Powell, F. Zak Tilocco
THE DISPERSED BUBBLES TWO-PHASE FLOW MODEL : THEORY AND APPLICATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.3, 1997, issue
Mohand Kessal
CORRELATION OF INTACT-LIQUID-CORE LENGTH FOR COAXIAL INJECTORS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Fan Bill Cheung, R. D. Woodward, R. L. Burch, Kenneth K. Kuo
A METHOD TO ESTIMATE GAS-DROPLET VELOCITY CROSS-CORRELATIONS IN SPRAYS
Atomization and Sprays, Vol.13, 2003, issue 2&3
Yannis Hardalupas, S. Horender
EFFECTS OF IMPINGEMENT CONDITIONS ON THE CHARACTERISTICS OF MUTUAL IMPINGING SPRAY
Atomization and Sprays, Vol.17, 2007, issue 2
Gwon Hyun Ko, Hong Sun Ryou