Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2019026990
pages 1081-1100

NUMERICAL INVESTIGATION OF THE PRIMARY BREAKUP REGION OF HIGH-PRESSURE SPRAYS

J. Manin
Sandia National Laboratories, 7011 East Ave., Livermore, CA 94550, USA; Artium Technologies, 470 Lakeside Dr., Sunnyvale, CA 94085, USA

Краткое описание

The experimental limitations of the current diagnostics in the near-nozzle region of high-speed sprays led researchers to seek complementary information about the atomization process and the droplet formation from high-fidelity simulations. Detailed simulations can deliver crucial information of these complex processes to improve the global understanding as well as engineering models. We performed detailed simulations of the Engine Combustion Network Spray A case, an ideal target supported by an impressive experimental and numerical data set. An open source code solving the incompressible Navier–Stokes equations was used to investigate the stages of the atomization processes under the challenging conditions of high-pressure sprays. The simulations demonstrated mass conservation and reasonable agreement with the experiments for macroscopic parameters such as spray penetration and spray dispersion. Analysis of the simulation results showed that an unperturbed liquid region was observed in all simulated domains and grid spacing, extending several millimeters downstream of the nozzle exit. Information on droplet size was extracted and compared to experimental data from optical microscopy, but despite good agreement with the experiments for a specific numerical resolution, the distributions showed that grid size convergence was not achieved for the present simulations. The analysis of the results supports that highly detailed computations are needed to understand droplet formation, and confirm that the conditions of modern diesel injection processes represent a highly challenging problem to modelers.

Ключевые слова: spray breakup, drop size, DNS, diesel spray

Articles with similar content:

HIGH-FIDELITY SIMULATION OF FUEL ATOMIZATION IN A REALISTIC SWIRLING FLOW INJECTOR
Atomization and Sprays, Vol.23, 2013, issue 11
Marios Soteriou, Xiaoyi Li
A NOVEL SPRAY MODEL VALIDATION METHODOLOGY USING LIQUID-PHASE EXTINCTION MEASUREMENTS
Atomization and Sprays, Vol.25, 2015, issue 5
Gina M. Magnotti, Caroline L. Genzale
ASSESSMENT OF ATOMIZATION MODELS FOR DIESEL ENGINE SIMULATIONS
Atomization and Sprays, Vol.19, 2009, issue 9
S. Som, Suresh Aggarwal
EFFECTS OF NEEDLE LIFT AND FUEL TYPE ON CAVITATION FORMATION AND HEAT TRANSFER INSIDE DIESEL FUEL INJECTOR NOZZLE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Shadi Darvish, George S. Dulikravich, Sohail R. Reddy, S. M. Javad Zeidi
EXPERIMENTAL AND NUMERICAL ANALYSIS OF SPRAY DISPERSION AND EVAPORATION IN A COMBUSTION CHAMBER
Atomization and Sprays, Vol.19, 2009, issue 10
Andreas Dreizler, Johannes Janicka, Amsini Sadiki, M. Hage, Mouldi Chrigui