Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2014010997
pages 1017-1033

A NUMERICAL METHOD FOR ANALYSIS OF SPRAY BEHAVIOR WITH DESIGN OF EXPERIMENT

Jeongkuk Yeom
Department of Mechanical Engineering, Dong-A Univ., 37 Nakdong-Daero 550 beon-gil saha-gu, Busan 604-714, Korea
Hyungsoo Ha
Graduate School, Department of Mechanical Engineering, Dong-A Univ., 37 Nakdong-Daero 550 beon-gil saha-gu, Busan 604-714, Korea

Краткое описание

The purpose of the present study is to optimize the diesel engine injector. Discharge of many cavitation bubbles and high injection velocity were set up for the design purpose. Injector optimization was progressed through computational fluid dynamics (CFD) and the design of the experiment was used to study the interior of the injector. ANSYS CFX 13.0 was used as the CFD tool to perform the CFD analysis of 16 experimental cases; these include four cases of each design variable; the hole diameter, the hole length, the hole angle, and the K factor. The results of the analysis show that the largest impact on the cavitation comes from the K factor, and the injection velocity dominantly depends on the hole diameter. The optimum injector derived based on these results has the size of 2, 4, 4, and 4 levels, respectively, for the hole diameter, the hole length, the hole angle, and the K factor. For the injection velocity of 460 m/s, it gives the best performance when 36% volume fraction of cavitation bubbles are injected.