Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v15.i5.20
pages 489-516

EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART I: NONEVAPORATIVE CONDITIONS

Jose M. Desantes
CMT-Motores Termicos, Universitat Politecnica de Valencia, 46022, Spain
Raul Payri
CMT–Motores Térmicos, Universitat Politècnica de València, Edificio 6D, Valencia, 46022, Spain
https://orcid.org/0000-0001-7428-5510
Jose M. Pastor
CMT-Motores Termicos - Universitat Politecnica de Valencia
Jaime Gimeno
CMT-Motores Tèrmicos, Universitat Politècnica de València, València, Spain

Краткое описание

This and the accompanying article present an experimental study of diesel sprays under current direct-injected diesel engine operating conditions. In this article (Part I) the study is focused on the flow behavior inside the nozzle, and the characteristics of the sprays injected into a high-density gas at low temperature so that fuel evaporation is avoided. A complete characterization study has been performed for five different nozzles, with nominal hole diameter ranging from 115 to 200 μm, in different injection conditions, in order to evidence the influence of nozzle geometry and injection parameters on major flow features, both inside and downstream of the nozzle orifices. The experimental methodology used in this work includes a characterization of the internal nozzle geometry on the basis of microscopic visualization of silicone molds of the nozzle, a hydraulic characterization of the nozzle, measurement of the spray momentum, and spray visualization and image processing. Combining these techniques makes it possible to determine the discharge, velocity, and contraction coefficients, and the critical cavitating conditions, all of which are necessary for a proper analysis of the injection process as well as for modeling purposes. Moreover, the accurate determination of these coefficients have made it possible to determine, on the basis of the spray visualization results, a unique proportionality constant of the expression for spray tip penetration derived from dimensional analysis for rectangular injection rates, valid for all the nozzles and conditions evaluated. In a second publication (Part II), fuel evaporation will be analyzed for the same set of nozzles used in this article, making use of the results presented here. Liquid spray penetration will be measured under both reacting and nonreacting atmospheres for the five nozzles and the dependence of liquid length with injection and ambient conditions will be analyzed by applying a simple spray model and the hypothesis of mixing limited vaporization.


Articles with similar content:

THE EFFECT OF FLASH BOILING ON THE ATOMIZATION PERFORMANCE OF GASOLINE DIRECT INJECTION MULTISTREAM INJECTORS
Atomization and Sprays, Vol.24, 2014, issue 6
Jerome Helie, Graham Wigley, Mehdi Mojtabi
DEVELOPMENT OF MICRO-DIESEL INJECTOR NOZZLES VIA MEMS TECHNOLOGY AND EFFECTS ON SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.13, 2003, issue 5&6
Michael L. Corradini, James P. Blanchard, Seunghyun Baik
EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART II: EVAPORATIVE CONDITIONS
Atomization and Sprays, Vol.15, 2005, issue 5
Jose M. Desantes, Raul Payri, Jose M. Pastor, Jose V. Pastor
EXPERIMENTAL STUDY OF THE TRANSITION TO THE FULLY DEVELOPED REGIME IN A SPRAY FROM A PLAIN JET ATOMIZER
Atomization and Sprays, Vol.11, 2001, issue 4
T. Boedec, J. C. Champoussin, J. L. Marie
DEVELOPMENT AND ASSESSMENT OF A HYBRID DROPLET COLLISION MODEL FOR TWO IMPINGING SPRAYS
Atomization and Sprays, Vol.13, 2003, issue 2&3
Gwon Hyun Ko, Hong Sun Ryou, Young Ki Choi, Seong Hyuk Lee