Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007198
pages 71-95

DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL

Jose M. Garcia-Oliver
CMT Motores Termicos−Universitat Politecnica de Valencia, Camino Vera s/n−46022 Valencia, Spain
Jose M. Pastor
CMT-Motores Termicos - Universitat Politecnica de Valencia
Adrian Pandal
Universidad de Oviedo
N. Trask
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
E. Baldwin
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
David P. Schmidt
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

Краткое описание

This work presents an implementation and evaluation of the Σ-Υ atomization model for Diesel spray CFD simulations. The Σ-Υ model is based on an Eulerian representation of the spray atomization and dispersion by means of a single-fluid variable density turbulent flow within a RANS framework. The locally homogeneous flow approach has been applied in order to develop a spray vaporization model based on state relationships. A finite-volume solver for model equations has been created using the OpenFOAM CFD open-source C++ library. Model predictions have been compared to experimental data from free Diesel sprays under nonvaporizing and vaporizing conditions. High-speed imaging, PDPA, and Rayleigh-scattering measurements have been used in order to assess the CFD model. Accurate predictions of liquid and vapor spray penetration, as well as axial velocity and mixture fraction profiles, can be simultaneously achieved for a wide range of injection pressure and ambient conditions, despite only having qualitatively correct predictions of droplet size. The success of these predictions supports the mixing-limited vaporization hypothesis. Model accuracy is better for high ambient density and injection pressure conditions. It is proposed that under low ambient density and injection pressure conditions, interfacial dynamics become more important and the single velocity field assumption is less appropriate.

Ключевые слова: Eulerian, Diesel, evaporation, CFD

Articles with similar content:

A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS Σ-Y EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.26, 2016, issue 7
Jose M. Desantes, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver
A SPHERICAL VOLUME INTERACTION DDM APPROACH FOR DIESEL SPRAY MODELING
Atomization and Sprays, Vol.25, 2015, issue 4
V. Ikonomou, R. M. McDavid, Tommaso Lucchini, Gianluca D'Errico, Roberto Torelli
MULTIDIMENSIONAL SIMULATION OF CAVITATING FLOWS IN DIESEL INJECTORS BY A HOMOGENEOUS MIXTURE MODELING APPROACH
Atomization and Sprays, Vol.18, 2008, issue 2
Olivier Simonin, Chawki Habchi, Nicolas Dumont
THE FULLY LAGRANGIAN APPROACH TO THE ANALYSIS OF PARTICLE/DROPLET DYNAMICS: IMPLEMENTATION INTO ANSYS FLUENT AND APPLICATION TO GASOLINE SPRAYS
Atomization and Sprays, Vol.27, 2017, issue 6
Morgan R. Heikal, Steven M. Begg, Oyuna Rybdylova, Artur K. Gilfanov, Timur S. Zaripov, Sergei S. Sazhin
EVAPORATIVE DIESEL SPRAY MODELING
Atomization and Sprays, Vol.17, 2007, issue 3
Jose M. Desantes, Jose M. Garcia, J. Javier Lopez, Jose M. Pastor