Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i123.100
pages 187-208

THE SPRAY-INDUCED FLOW AND ITS EFFECT ON THE TURBULENT CHARACTERISTIC COMBUSTION TIME IN Dl DIESEL ENGINES

Franz X. Tanner
Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA

Краткое описание

In direct-injection diesel engines the combustion process is strongly influenced by the turbulence of the spray-induced flow. This flow is transient in nature and, therefore, the equilibrium-based k-e-type turbulence models yield inaccurate predictions of the turbulence mixing time scales. This requires adjustments of the turbulence characteristic combustion time by means of the coefficient CM, in order to match experimental cylinder pressures of different engines. These adjustments are explained in terms of nonequilibrium turbulence behavior of the spray-induced flow. A relation between the spatially averaged equilibrium and nonequilibrium turbulence time scales is derived which leads to a scaling law between the different engines. In particular, the value of CM for one engine can be obtained from the optimum CM of another engine, provided the turbulence determining integral length scales are known. This scaling behavior has been demonstrated for four substantially different engines by comparing the tuned values of CM with the computed scaling factors, and favorable agreement has been obtained.


Articles with similar content:

Numerical and experimental study of a micro gas turbine combustor
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
R. Pagliara , Patrizio Massoli, F. Chiariello , Raffaela Calabria, F. Reale , R. Piazzesi
FINITE REYNOLDS NUMBER EFFECTS ON THE PRESSURE SPECTRUM IN ISOTROPIC TURBULENCE FREE DECAY
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Marcello Meldi, Pierre Sagaut
LIQUID TRANSFER AND ENTRAPMENT CORRELATION FOR DROPLET-ANNULAR FLOW
International Heat Transfer Conference 7, Vol.12, 1982, issue
K. Mishima, M. Ishii
An Acoustic Model of a Plane Turbulent Boundary Layer and Its Radiation Spectrum
International Journal of Fluid Mechanics Research, Vol.23, 1996, issue 1-2
Victor T. Grinchenko, I. V. Mayatskiy
Heat and Mass Transfer in Wax Deposition in Pipelines
International Heat Transfer Conference 15, Vol.1, 2014, issue
Angela O. Nieckele, Luis Fernando A. Azevedo