Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i123.70
pages 123-143

STABILITY BOUNDARIES OF LAMINAR PREMIXED POLYDISPERSE SPRAY FLAMES

J. Barry Greenberg
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Краткое описание

A simple model of a flame front propagating through a fuel-rich droplet—vapor—air mixture is presented. An arbitrary polydisperse size distribution of droplets in the spray is allowed. The droplets are permitted to vaporize at a finite rate so that their interaction with and possible traversal of the flame front is accounted for. Steady-state solutions are established by means of large activation energy asymptotics. An analysis of instability to transverse perturbations is then carried out in order to determine neutral stability boundaries.
Two initial droplet size distributions having the same Sauter mean diameter (SMD) are considered. One is initially quasi-monodisperse (A), whereas the second is bimodal (B). It is found that the onset of flame cellularization is sensitive to the initial droplet size distribution in the spray. Specifically, under certain operating conditions, the flame resulting from distribution A is cellular, whereas that of distribution B is stable. Under other conditions, in which both spray flames are unstable, the cellular structure of flame A is found to be finer than that of flame B. These results indicate that use of the SMD to characterize a spray in the context of cellular flame instability may lead to mistaken conclusions. However, the location of the pulsating stability boundaries was found to be rather insensitive to the initial droplet distribution and, indeed, to the presence of the droplets. In addition, it lay beyond the practical range of Lewis numbers relevant to these rich flames.


Articles with similar content:

ASYMPTOTIC ANALYSIS OF DROPLET COALESCENCE EFFECTS ON SPRAY DIFFUSION FLAMES IN A UNIDIRECTIONAL SHEAR LAYER FLOW
Atomization and Sprays, Vol.5, 1995, issue 4&5
David Katoshevski, Yoram Tambour
TRANSIENT BEHAVIOR IN THE EVOLUTION OF LAMINAR MULTISIZE SPRAY DIFFUSION FLAMES
Atomization and Sprays, Vol.5, 1995, issue 4&5
J. Barry Greenberg, I. Shpilberg
THE RELATIONSHIP BETWEEN LOCAL DROPLET CLOUD SIZE STRUCTURE AND AN INSTABILITY OF A LAMINAR SPRAY DIFFUSION FLAME
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
J. Barry Greenberg, I. Shpilberg
GROUP COMBUSTION IN SPRAY FLAMES
Multiphase Science and Technology, Vol.11, 1999, issue 1
Francois Lacas, Juan-Carlos Rolon, Nasser Darabiha, Sebastien Candel
SENSITIVITY OF PULSATING ORGANIC GEL POLYDISPERSE SPRAY DIFFUSION FLAMES TO EVAPORATION FREQUENCY DROPLET-SIZE DEPENDENCY
Atomization and Sprays, Vol.19, 2009, issue 6
J. Barry Greenberg, Benveniste Natan, A. Kunin