Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v8.i5.50
pages 565-600

A COMPARATIVE STUDY OF ROOM-TEMPERATURE AND COMBUSTING FUEL SPRAYS NEAR THE INJECTOR TIP USING INFRARED LASER DIAGNOSTICS

Terry Parker
Florida Polytechnic University, Lakeland, FL 33805, USA
L. R. Rainaldi
The Colorado School of Mines, Golden, Colorado, USA
W. T. Rawlins
Physical Sciences, Inc., Andover, Massachusetts, USA

Краткое описание

This article describes an investigation of diesel sprays using multiple-wavelength extinction to probe the region of high droplet number density surrounding the injector tip. Multiple-wavelength extinction used lasers at 9.2 and 0.633 μm coaligned and focused into a 0.25 mm beam as it traversed the spray. The diagnostic technique is discussed in detail, along with the effect of size distributions on the measurement. Droplet sizes for a room-ambient system, high-pressure and room-temperature system, and a combusting spray system are presented. For the room-ambient sprays, the droplet diameters were typically between 5 and 8 μm for locations 5,10,15, and 25 mm from the injector tip. The behavior of the high-temperature combusting spray was markedly different than its room-temperature counterpart as little as 10 mm from the injector tip. High-temperature fuel sprays displayed an initial period with steady droplet number densities followed by an apparent ignition and subsequent significant temporal variation in number density. Droplet diameters were observed to be near 3.5 μm for the combusting system. Comparisons of these results with predictions based on published correlations for primary and secondary breakup are also presented.


Articles with similar content:

STUDY OF AMBIENT TURBULENCE EFFECTS ON DIESEL SPRAYS IN A FAN-STIRRED VESSEL
Atomization and Sprays, Vol.16, 2006, issue 6
Tamas Jakubik, Malcolm Lawes, Miroslav Jicha, Robert M. Woolley
LIQUID- AND VAPOR-PHASE DYNAMICS OF A SOLID-CONE PRESSURE SWIRL ATOMIZER
Atomization and Sprays, Vol.4, 1994, issue 2
James E. Peters, James A. Drallmeier
EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM
Atomization and Sprays, Vol.16, 2006, issue 5
Rolf D. Reitz, Chang Sik Lee, Sungwook Park
A COMPARISON OF DIESEL AND JATROPHA METHYL ESTER (JME) SPRAY CHARACTERISTICS: EFFECT OF NOZZLE ENTRY RADIUS
Atomization and Sprays, Vol.26, 2016, issue 10
R. V. Ravikrishna, Prasad Boggavarapu
SPRAY CHARACTERISTICS OF A FLOW-BLURRING ATOMIZER
Atomization and Sprays, Vol.20, 2010, issue 9
Ajay Agrawal, Benjamin M. Simmons