Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Eukaryotic Gene Expression
Импакт фактор: 1.841 5-летний Импакт фактор: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Печать: 1045-4403
ISSN Онлайн: 2162-6502

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019030785
pages 551-564

Bioinformatics Approaches to Explore the Phylogeny and Role of BRCA1 in Breast Cancer

Farwa Jabbir
Department of Biotechnology, University of Sargodha, Pakistan
Muhammad Irfan
Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
Ghulam Mustafa
Department of Biochemistry, Government College University, Faisalabad, Pakistan
Hafiz Ishfaq Ahmad
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China

Краткое описание

BRCA1 and BRCA2 are the two major vulnerability genes involved in hereditary breast cancer. BRCA1 gene programs for a tumor suppressor protein that helps in repairing DNA. The purpose of this study was to reveal the position and nature of amino acid residues involved in breast cancer, and it provides a complete characterization of BRCA1 and its evolutionary relationship with 34 selected organisms. The sequences were retrieved from NCBI, and after analyzing them in BLAST, a complete annotation of both types of genes from a human was done; in addition, a phylogenetic analysis was performed from 34 different organisms to study evolutionary relationships of BRCA1. A total of 1080 positions of genes were found in the dataset in which the first 3 were noncoding positions and the remaining were all coding regions. A tree was originated using MEGA that showed strong evolutionary relationships among three orders (Catertiodactyla, carnivore, and primates) of these organisms, which are closely related to each other. All features of wild and mutant proteins were studied by ProtParam. The location and number of alpha helices, beta sheets, coils, strands, and the binding regions, disordered regions were identified using different tools (SOPMA, PHD, and GOR4) and their percentages greatly varied. Our study revealed that the BRCA1 gene involved in cancer development had a weaker selection than those involved in sporadic cancer. Our investigation showed that in mammals, selection acting on human cancer genes drives adaptive variations in behaviors related to organismal fitness, rather than select for biological roles directly linked to cancer.

Ключевые слова: bioinformatics, BRCA1, cancer, phylogeny, MEGA

ЛИТЕРАТУРА

  1. Henderson BR. The BRCA1 breast cancer suppressor: regulation of transport, dynamics, and function at multiple subcellular locations. Scientifica. 2012;2012.

  2. Ibrahim SS, Hafez EE, Hashishe MM. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection. J Exp Clin Cancer Res. 2010;29(1):82.

  3. Sagara Y, Mallory M, Wong S, Aydogan F, DeSantis S, Barry WT, Golshan M. Survival benefit of breast surgery for low-grade ductal carcinoma in situ: a population-based cohort study. JAMA Surg. 2015;150(8):739-45.

  4. Agus DB, Alexander JF, Arap W, Ashili S, Aslan JE, Austin RH, Backman V, Bethel KJ, Bonneau R, Chen WC. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep. 2013;3.

  5. Faguet GB. A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer. 2015;136(9):2022-36.

  6. Li M, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. Incidence of BRCA1 somatic mutations and response to neoadjuvant chemotherapy in Chinese women with triple-negative breast cancer. Gene. 2016;584(1):26-30.

  7. Rabia T, Sadia H, Fatima A. Molecular stress or geography risk factors leading to high prevalence of Breast Cancer. J App Pharm. 2013;4:706-12.

  8. Zahra F, Humayoun F, Yousaf T, Khan NA. Evaluation of risk factors for carcinoma breast in Pakistani women. J Fatima Jinnah Med Assoc. 2013;1:34-38.

  9. Zhong Q, Peng H-L, Zhao X, Zhang L, Hwang W-T. Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis. Clin Cancer Res. 2015 Jan 1;21(1):211-20.

  10. Rashid MU, Zaidi A, Torres D, Sultan F, Benner A, Naqvi B, Shakoori AR, Seidel-Renkert A, Farooq H, Narod S, Amin A. Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. Int J Cancer. 2006;119(12):2832-39.

  11. Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islamic Rep Iran. 2016;30:369.

  12. Park B, Dowty JG, Ahn C, Win AK, Kim SW, Lee MH, Lee JW, Kang E, Hopper JL, Park SK. Breast cancer risk for Korean women with germline mutations in BRCA1 and BRCA2. Breast Cancer Res Treatment. 2015 Aug 1;152(3):659-65.

  13. Kotsopoulos J, Lubinski J, Salmena L, Lynch HT, Kim-Sing C, Foulkes WD, Ghadirian P, Neuhausen SL, Demsky R, Tung N, Ainsworth P. Breastfeeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2012;14(2):R42.

  14. Ayub SG, Rasool S, Ayub T, Khan SN, Wani KA, Andrabi KI. Mutational analysis of the BRCA2 gene in breast carcinoma patients of Kashmiri descent. Mol Med Rep. 2014;9(2):749-53.

  15. Ruddy KJ, Gelber SI, Tamimi RM, Ginsburg ES, Schapira L, Come SE, Borges VF, Meyer ME, Partridge AH. Prospective study of fertility concerns and preservation strategies in young women with breast cancer. J Clin Oncol. 2014;32(11):1151-56.

  16. de Pedro M, Otero B, Martin B. Fertility preservation and breast cancer: a review. ecancermedicalscience. 2015;9.

  17. Pothuri B. BRCA1- and BRCA2-related mutations: therapeutic implications in ovarian cancer. Ann Oncol. 2013;24(Suppl 8):viii22-27.

  18. Liu G, Yang D, Sun Y, Shmulevich I, Xue F, Sood AK, Zhang W. Differing clinical impact of BRCA1 and BRCA2 mutations in serous ovarian cancer. Pharmacogenomics. 2012;13(13):1523-35.

  19. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer Basic Clin Res. 2015:17.

  20. Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, Sarkar S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticanc Res. 2014;34(3):1071-77.

  21. Akram M, Siddiqui S. Breast cancer management: past, present and evolving. India J Cancer. 2012;49(3):277.

  22. Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698-707.

  23. Wu J, Lu L-Y, Yu X. The role of BRCA1 in DNA damage response. Protein Cell. 2010;1(2):117-23.

  24. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Canc. 2012;12(1):68-78.

  25. Pearson WR. [5] Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63-98.

  26. Kaplan W, Littlejohn TG. Swiss-PDB viewer (deep view). Briefings Bioinfo. 2001;2(2):195-97.

  27. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.

  28. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784-88.

  29. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-97.

  30. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Honigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L. PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014 May 5;42(W1):W337-43.

  31. Rost B, Sander C. Prediction ofprotein secondary structure at better than 70% accuracy. J Mol Biol. 1993;232(2):584-99.

  32. Garnier J, Gibrat J-F, Robson B. [32] GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540-53.

  33. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comp Appl Biosci. 1995;11(6):681-84.

  34. Rost B, Sander C, Schneider R. PHD-an automatic mail server for protein secondary structure prediction. Com Appl Biosci. 1994;10(1):53-60.

  35. Sanchez R, Sali A. Comparative protein structure modeling: introduction and practical examples with modeller. Protein Structure Prediction: Methods Protocols. 2000:97-129.

  36. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Suppl 2):W407-10.

  37. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystal. 1993;26(2):283-91.

  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Green-blatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.

  39. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195-201.

  40. Bairoch A, Apweiler R. The SWISS-PROT protein se-quence database user manual. Swiss Institute of Bioinfor-matics and Central Medical University. 2000.

  41. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41(D1):D36-42.

  42. Ahmad HI, Liu G, Jiang X, Edallew SG, Wassie T, Tesema B, Yun Y, Pan L, Liu C, Chong Y, Yu ZJ. Maximum-likelihood approaches reveal signatures of positive selection in BMP15 and GDF9 genes modulating ovarian function in mammalian female fertility. Ecol Evol. 2017;7(21):8895-902.

  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-29.

  44. Ahmad HI, Liu G, Jiang X, Liu C, Chong Y, Huarong H. Adaptive molecular evolution of MC 1R gene reveals the evidence for positive diversifying selection in indigenous goat populations. Ecol Evol. 2017;7(14):5170-80.

  45. Ahmad MJ, Ahmad HI, Adeel MM, Liang A, Hua G, Murtaza S, Mirza RH, Elokil A, Ullah F, Yang L. Evolutionary analysis of makorin ring finger protein 3 reveals positive selection in mammals. Evol Bioinfo. 2019;15:1176934319834612.

  46. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25.

  47. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985:783-91.

  48. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Nat Acad Sci U S A. 2004;101(30):11030-5.

  49. Gotoh O. Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol. 1996;264(4):823-38.

  50. Katoh K, Misawa K, Kuma Ki, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-66.

  51. Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009.

  52. Bromberg Y, Yachdav G, Ofran Y, Schneider R, Rost B. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the "deep web." Curr Opin Drug Discov Dev. 2009;12(3):408-19.

  53. Schilling J, Gomes L, Benavides E, Nguyen T, Paniagua B, Styner M, Boen V, Gonjalves JR, Cevidanes LH. Regional 3D superimposition to assess temporomandibular joint condylar morphology. Dentomaxillo Radiol. 2013;43(1):20130273. doi: 10.1259/dmfr.20130273.

  54. Sippl MJ. Recognition of errors in three-dimensional struc-tures of proteins. Proteins: Structure, Function Bioinform. 1993;17(4):355-62.

  55. Altman EI. Predicting financial distress of companies: re-visiting the Z-score and ZETA models. New York: Stern School of Business, New York University; 2000. p. 9-12.

  56. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T. The SWISS-MODEL pepository and associated resources. Nucleic Acids Res. 2009;37(Suppl 1):D387-92.

  57. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23.

  58. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381-5.

  59. Waddell PJ, Kishino H, Ota R. A phylogenetic foundation for comparative mammalian genomics. Genome Info. 2001;12:141-54.

  60. Springer MS, Stanhope MJ, Madsen O, de Jong WW. Molecules consolidate the placental mammal tree. Trends Ecol Evol. 2004;19(8):430-8.