Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Eukaryotic Gene Expression
Импакт фактор: 2.156 5-летний Импакт фактор: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Печать: 1045-4403
ISSN Онлайн: 2162-6502

Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i3.10
24 pages

Structure and Function of Histone Methyltransferases

Raymond C. Trievel
University of Michigan Medical School, Department of Biological Chemistry, Ann Arbor, MI 48109-0606

Краткое описание

Histones are the major protein constituent of chromatin in the eukaryotic nucleus. These proteins undergo a host of different post-translational modifications, including phosphorylation, acetylation, and methy-lation, which have profound effects on the remodeling of chromatin. Histone modifications can function either individually or combinatorially to govern such processes as transcription, replication, DNA repair, and apoptosis. Recent studies have focused on histone arginine and lysine methylation and the roles of these modifications in transcriptional regulation and the establishment of heterochromatin. Concomitantly, several families of histone methyltransferases (HMTs) have been identified that catalyze the methylation of specific arginines or lysines in histones H3 and H4. Not surprisingly, many of these methyltransferase genes had been previously identified as important genetic regulators in organisms such as yeast and Drosophila, which underscores the importance of histone methylation in transcriptional control and chromatin remodeling. Structures of several representatives of these HMT families have recently been determined, yielding insight into their catalytic mechanism and histone substrate specificity. The focus of this review is to briefly summarize the roles of histone methylation in chromatin remodeling and to discuss the structures, substrate specificities, and mechanisms of the different classes of HMTs.

Articles with similar content:

Structural and Functional Properties of the Actin Gene Family
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 3
Tina M. Bunnell , James M. Ervasti
Control of Chromatin Remodeling
Critical Reviews™ in Eukaryotic Gene Expression, Vol.10, 2000, issue 3&4
Mariko Moniwa, James R. Davie
Histone Deacetylases and Mechanisms of Regulation of Gene Expression
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 1-2
Hong Ping Chen, Ting C. Zhao, Yu Tina Zhao
Contributions of the Histone Arginine Methyltransferase PRMT6 to the Epigenetic Function of RUNX1
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 3
Joern Lausen
A Compilation and Classification of DNA Binding Sites for Protein Transcription Factors from Vertebrates
Critical Reviews™ in Eukaryotic Gene Expression, Vol.4, 1994, issue 2-3
Teni Boulikas