Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Eukaryotic Gene Expression
Импакт фактор: 2.156 5-летний Импакт фактор: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Печать: 1045-4403
ISSN Онлайн: 2162-6502

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v12.i1.20
30 pages

The Control of Bone Growth by Parathyroid Hormone, Leptin, & Statins

James F. Whitfield
Institute for Biological Sciences, National Research Council of Canada, Bldg. M-54, Montreal Road Campus, Ottawa, ON, K1A 0R6, Canada
Paul Morley
Institute for Biological Sciences, National Research Council of Canada, Bldg. M-54, Montreal Road Campus, Ottawa, ON, K1A 0R6, Canada
Gordon E. Willick
Institute for Biological Sciences, National Research Council of Canada, Bldg. M-54, Montreal Road Campus, Ottawa, ON, K1A 0R6, Canada

Краткое описание

There is a need for anabolic drugs that can stimulate bone growth, improve bone microarchitecture, accelerate fracture healing and thus restore bone strength to oteoporotics. The anabolic agents currently leading the way to the clinic are the parathroid hormone (PTH) and some of its adenylyl cyclase-stimulating fragments. Here we discuss what is known about the genes and their products that are stimulated by PTHR1 receptor signals and in four ways cause a large accumulation of bone-building osteoblasts. We will also discuss the currently controversial anabolic activity of the cholesterol-lowering statins and outline a possible mechanism by which they might stimulate BMP-2 expession and bone growth. Finally, we will present the growing evdence for the body’s “fat-o-stat” cytokine—leptin—indirectly restraining bone growth via a hypothalamic factor and at the same serving as a local autocrine/paracrine stimulator of osteoblast activity via IGF-I and an inhibitor of osteoclast generation by stimulating osteoblastic cells’ antiosteoclast OPG (osteoprotegerin) expression and reducing their proosteoclast RANKL expression.


Articles with similar content:

The Regulation and Regulatory Role of Collagenase in Bone
Critical Reviews™ in Eukaryotic Gene Expression, Vol.6, 1996, issue 1
Prince T. Chan, Terry H. Omura, Nicola C. Partridge, A. Terrece Pearman, Wan-Yin Chou, Sharon R. Bloch, Hobart W. Walling
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary Stein, Christopher Lengner
Molecular Mechanisms of Tumor-Bone Interactions in Osteolytic Metastases
Critical Reviews™ in Eukaryotic Gene Expression, Vol.10, 2000, issue 2
Theresa A. Guise, John M. Chirgwin
Hdac-Mediated Control of Endochondral and Intramembranous Ossification
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Meghan E. McGee-Lawrence, Elizabeth W. Bradley, Jennifer J. Westendorf
Regulation of Chondrocytic Gene Expression by Biomechanical Signals
Critical Reviews™ in Eukaryotic Gene Expression, Vol.18, 2008, issue 2
Sudha Agarwal, Shashi Madhavan, Jin Nam, Suresh Agarwal, Jr., Thomas J. Knobloch