Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v36.i5.60
pages 460-472

Squeeze-Flow Electroosmotic Pumping Between Charged Parallel Plates

Siddharth Talapatra
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur-721302, India; Heat Transfer Research, Inc., 165 Research Drive, Navasota, TX 77868 USA
Suman Chakraborty
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Advanced Technology Development Centre, Indian Institute of Technology Kharagpur 721302, Kharagpur, India

Краткое описание

In the present work, the squeezing flow between two charged parallel plates is theoretically investigated, with a provision of accounting for the electric double layer overlap effects. The electroviscous effects arising from the distortion of the electric double layer flow field are investigated in detail, for different strengths of the imposed plate motion. It is revealed that there can be a significant deviation between the predictions from the present model and those obtained by employing a classical Poisson-Boltzmann equation based model. This discrepancy can be attributed to some of the over-simplified assumptions associated with the standard models that might only remain valid for large separation distances between the two plates. Many of these simplified assumptions are found to hold inappropriate in case the squeezing flow occurs in such a narrow gap that the instantaneous liquid layer thickness becomes of the same order or less than the order of the characteristic electric double layer thickness. In such cases, there is likely to be a deficit of counterions within the bulk liquid due to an excess accumulation of those in the electrical double layer. On the other hand, there may occur a surplus of coions in the bulk liquid region due to a rejection of those in the electrical double layer. As a consequence of this presence of excess net charges in the bulk liquid region, strong electro-hydrodynamic interactions are likely to occur between the squeezing motion and the electroosmotic transport, which cannot be accurately captured by the classical theory.


Articles with similar content:

Dynamics of the Davydov Soliton in Electrostatic Field
Telecommunications and Radio Engineering, Vol.65, 2006, issue 16-20
L.S. Brizhik, Y. E. Natanzon, O.O. Yeremko
Effect of Magnetic-Field-Dependent Viscosity on a Rotating Ferromagnetic Fluid Heated and Soluted from Below, Saturating a Porous Medium
Journal of Porous Media, Vol.8, 2005, issue 6
Sunil, R. C. Sharma, Divya
BUBBLE SIZE IN BUBBLY FLOW IN DUCTS AND BUBBLE COLUMNS
International Heat Transfer Conference 10, Vol.16, 1994, issue
Richard H.S. Winterton, P. Obry
THE USE OF A HIGHLY CONDUCTING LINER IN REDUCING LOCAL HEAT FLUX DENSITY CONCENTRATIONS
International Heat Transfer Conference 6, Vol.5, 1978, issue
B. D. Turland
A NEW NUMERICAL TECHNIQUE FOR TRANSPORTATION OF AIRBORNE PARTICLES
Hybrid Methods in Engineering, Vol.3, 2001, issue 1
S. D. Wright, Lionel Elliott, Derek B. Ingham