Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v31.i6.10
pages 529-551

Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction

Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021
Ali F. Al-Mudhaf
Manufacturing Engineering Department, The Public Authority for Applied Education and Training, P. O. Box 42325, Shuweikh, 70654 Kuwait
Jasem Al-Yatama
Manufacturing Engineering Department, The Public Authority for Applied Education and Training, P. O. Box 42325, Shuweikh, 70654 Kuwait

Краткое описание

The problem of steady, laminar, double-diffusive natural convection boundary-layer flow of a micropolar fluid over a vertical permeable semi-infinite plate embedded in a uniform porous medium in the presence of non-Darcian and thermal dispersion effects is investigated. Also, the model problem allows for possible heat generation or absorption and first-order chemical reaction effects. Both the wall temperature and wall concentration are assumed to have linear variations with the distance along the plate. Appropriate transformations are employed to transform the governing differential equations into a non-similar form that can be solved as an initial-value problem. The resulting equations are solved numerically by an efficient implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in good agreement. A parametric study illustrating the influence of the microrotation material parameter, concentration to thermal buoyancy ratio, chemical reaction parameter, Schmidt number, heat generation or absorption and the surface suction or injection effects on the fluid velocity, microrotation, temperature and solute concentration as well as the local skin-friction coefficient, local wall microrotation coefficient and the local wall heat and mass transfer coefficients is conducted. The results of this parametric study are shown graphically and the physical aspects of the problem are highlighted and discussed.


Articles with similar content:

Simultaneous Heat and Mass Transfer by Natural Convection from a Cone and a Wedge in Porous Media
Journal of Porous Media, Vol.3, 2000, issue 2
Osamah Al-Hawaj, Ali J. Chamkha, A.-R.A. Khaled
THERMAL DIFFUSION EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC BOUNDARY LAYER SLIP FLOW PAST A VERTICAL PERMEABLE PLATE
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 1
B. Rushi Kumar, S. Vijaya Kumar Varma, M. C Raju, C. Veeresh
Transient Natural Convection in Differentially Heated Porous Enclosures
Journal of Porous Media, Vol.3, 2000, issue 2
A. A. Merrikh, A. A. Mohamad
MIXED CONVECTION MHD HEAT AND MASS TRANSFER OVER A NONLINEAR STRETCHING VERTICAL SURFACE IN A NON-DARCIAN POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 6
Rama Subba Reddy Gorla, Masoud Molaei Najafabadi
INTERNAL HEAT GENERATION OF DUSTY FLUID THROUGH POROUS MEDIA OVER STRETCHING SHEET
Journal of Porous Media, Vol.21, 2018, issue 9
Deog-Hee Doh, E. Ramya, P. Gokulavani, M. Muthtamilselvan