Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 47, 2020 Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018025511
pages 383-394

STOKES FLOW OF REINER-RIVLIN FLUID PAST A DEFORMED SPHERE

Bharat Raj Jaiswal
Department of Mathematics, AKS University, Satna 485001, M.P., India

Краткое описание

In this work, an analytic investigation of steady axisymmetric creeping flow of a Reiner-Rivlin fluid past an approximate spheroid whose shape varies slightly from the shape of a sphere is considered and carried out. The condition of impenetrability and no-slip conditions on the spheroidal surface SD are used as boundary conditions to the first order of small parameter ε characterizing the deformation. On the basis of Stokesian assumption, a general solution is modeled in the spherical coordinate systems (R, θ, φ) in the infinite expanse of a non-Newtonian Reiner-Rivlin liquid. In the limiting cases, previous well-known results are deduced and the results found are in good agreement with the available literature. As a special case, we have obtained the expressions of pressure and drag force on solid sphere. Also, the variation of the drag force and pressure with respect to the fluid parameters are studied and depicted graphically.

ЛИТЕРАТУРА

  1. Acrivos, A. and Taylor, T.D., The Stokes' Flow past an Arbitrary Particle: The Slightly Deformed Sphere, Chem. Eng. Sci., vol. 19, no. 7, pp. 445-451,1964.

  2. Aero, E.L., Bulygin, A.N., and Kuvshinskii, E.V., Asymmetric Hydromechanics, J. Appl. Math. Mech, vol. 29, no. 2, pp. 333-346, 1965.

  3. Brenner, H., The Stokes' Resistance of a Slightly Deformed Sphere, Chem. Eng. Sci., vol. 19, no. 8, pp. 519-539, 1964.

  4. Dassios, G., Hadjinicolaou, M., and Payatakes, A.C., Generalized Eigen Function and Complete Semi Separable Solutions for Stokes' Flow in Spheroidal Coordinates, Q. Appl. Math, vol. 52, no. 1, pp. 157-191, 1994.

  5. Hadamard, J.S., The Translational Motion of a Fluid Sphere in a Fluid Medium, Compt. Rend. Acad. Sci., vol. 152, pp. 1735-1738, 1911.

  6. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, London: Prentice Hall, 1965.

  7. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, The Hague, the Netherlands: Martinus Nijoff, 1983.

  8. Iyengar, T.K.V. and Shrinivasacharya, D., Stokes' Flow of an Incompressible Micropolar Fluid past an Approximate Sphere, Int. J. Eng. Sci., vol. 31, no. 1, pp. 115-123, 1993.

  9. Jain, M.K., Boundary Layer Effects in Non-Newtonian Fluids, J. Appl. Math. Mech, vol. 35, nos. 1-2, pp. 12-16, 1955.

  10. Jaiswal, B.R. and Gupta, B.R., Wall Effects on Reiner-Rivlin Liquid Spheroid, Appl. Comput. Mech, vol. 8, no. 2, pp. 157-176, 2014.

  11. Jaiswal, B.R. and Gupta, B.R., Stokes' Slow of Micropolar Fluid past a Non-Newtonian Liquid Spheroid, Int. J. Fluid Mech. Res., vol. 42, no. 2, pp. 170-189, 2015.

  12. Prasad, M.K. and Kaur, M., Stokes' Flow of Viscous Fluid past a Micropolar Fluid Spheroid, Adv. Appl. Math. Mech., vol. 9, no. 5, pp. 1076-1093,2017.

  13. Oberbeck, A., About Stationary Fluid Movements with Consideration of Internal Friction, J. Pure Appl. Math., vol. 1876, no. 81, pp. 62-80,1876.

  14. Palaniappan, D., Creeping Flow about a Slightly Deformed Sphere, J. Appl. Math. Phys., vol. 45, no. 5, pp. 61-66, 1994.

  15. Payne, L.E. and Pell, W.H., The Stokes' Flow Problem for a Class of Axially Symmetric Bodies, J. Fluid Mech., vol. 7, no. 4, pp. 529-549, 1960.

  16. Ramkissoon, H., Stokes' Flow past a Slightly Deformed Fluid Sphere, J Appl. Math. Phys., vol. 37, no. 6, pp. 859-866, 1986.

  17. Ramkissoon, H., Slow Flow of a Non-Newtonian Liquid past a Fluid Sphere, Acta Mech, vol. 78,nos. 1-2, pp. 73-80, 1989.

  18. Ramkissoon, H., Visco-Elastic Flow past a Spheroid, J. Appl. Math. Phys., vol. 41, no. 1, pp. 137-145, 1990.

  19. Ramkissoon, H., Slip Flow past an Approximate Spheroid, Acta Mech, vol. 123, nos. 1-4, pp. 227-233, 1997a.

  20. Ramkissoon, H., Polar Flow past a Spheroid, Eng. Trans., vol. 45, pp. 171-180, 1997b.

  21. Ramkissoon, H., Stokes' Flow past a Non-Newtonian Fluid Spheroid, J. Appl. Math. Mech, vol. 78, no. 1, pp. 61-66, 1998.

  22. Ramkissoon, H. and Majumadar, S.R., Micropolar Fluid past a Slightly Deformed Fluid Sphere, J. Appl. Math. Mech., vol. 68, no. 3, pp. 155-160,1988.

  23. Ramkissoon, H. and Rahaman, K., Non-Newtonian Fluid Sphere in a Spherical Container, Acta Mech., vol. 149, nos. 1-4, pp. 239-245,2001.

  24. Rao, S.K.L. and Rao, P.B., Slow Stationary Flow of a Micropolar Fluid past a Sphere, J. Eng. Math., vol. 4, no. 3, pp. 207-217, 1970.

  25. Rathna, S.L., Slow Motion of a Non-Newtonian Liquid past a Sphere, Q. J. Mech. Appl. Math, vol. 15, no. 4, pp. 427-434, 1962.

  26. Reiner, M., A Mathematical Theory of Dilatancy, Am. J. Math, vol. 67, pp. 350-362, 1945.

  27. Rybczynski, W., The Translational Motion of a Fluid Sphere in a Fluid Medium, Bull. Acad. Sci. Cracovie A, vol. 40, pp. 40-46, 1911.

  28. Sampson, R.A., On Stokes' Current Function, Philos. Trans. R. Soc. A, vol. 182, pp. 449-518,1891.

  29. Sharma, H.G., Creeping Motion of Non-Newtonian Fluid past a Sphere, Int. J. Pure Appl. Math., vol. 10, no. 12, pp. 1565-1575, 1979.

  30. Srivastava, D.K., Yadav, R.R., and Yadav, S., Steady Stokes' Flow around Deformed Sphere: Class of Oblate Bodies, Int. J. Appl. Math. Mech, vol. 8, no. 9, pp. 17-53,2012.

  31. Srivastava, D.K., Yadav, R.R., and Yadav, S., Steady Oseen's Flow past a Deformed Sphere: An Analytical Approach, J. Theor. Appl. Mech, vol. 51, no. 3, pp. 661-673,2013.

  32. Stokes, G.G., On the Effects of Internal Friction of Fluids on Pendulums, Trans. Cambridge Philos. Soc., vol. 9, pp. 8-106, 1851.

  33. Stokes, V.K., Effects of Couple Stresses in Fluids on the Creeping Flow past a Sphere, Phys. Fluids, vol. 14, no. 7, pp. 1580-1582, 1971.

  34. Yadav, P.K., Tiwari, A., and Singh, P., Hydrodynamic Permeability of a Membrane Built up by Spheroidal Particles Covered by Porous Layer, Acta Mech, vol. 229, no. 4, pp. 1869-1892,2018.