Доступ предоставлен для: Guest
International Journal of Fluid Mechanics Research
Главный редактор: Atle Jensen (open in a new tab)
Заместитель главного редактора: Valery Oliynik (open in a new tab)
Редактор-основатель: Victor T. Grinchenko (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5102

ISSN Онлайн: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

OSCILLATIONS AND PARAMETRIC INSTABILITY OF A CYLINDRICAL DROP OF A LOW-VISCOUS LIQUID

Том 46, Выпуск 5, 2019, pp. 441-457
DOI: 10.1615/InterJFluidMechRes.2019025743
Get accessGet access

Краткое описание

The focus of the research is on eigen oscillations and parametric instability of oscillations induced to a cylindrical drop surrounded by the gas whose effect is neglected. Axisymmetrical and translational vibrations are studied. Viscous boundary layer on the solid surface is taken into account, given the contact line is stationary. Eigen frequencies have been determined. In the first order of expansion, a correction to frequency is obtained, which is caused by dissipation in the viscous boundary layer. Regions of parametric instability have been found. Taking viscosity into account expectedly leads to the appearance of the vibrations amplitude terminal threshold and the resonance frequency shift.

ЛИТЕРАТУРА
  1. Alabuzhev, A.A., Behavior of a Cylindrical Bubble under Vibrations, Comput. Contin. Mech., vol. 7, no. 2, pp. 151-161, 2014.

  2. Alabuzhev, A.A., Axisymmetric Oscillations of a Cylindrical Droplet with a Moving Contact Line, J. Appl. Mech. Tech. Phys., vol. 57, no. 6, pp. 1006-1015,2016a.

  3. Alabuzhev, A.A., Axisymmetric Oscillations of a Cylindrical Drop in the Final Volume of Fluid, Comput. Contin. Mech, vol. 9, no. 3, pp. 316-330, 2016b.

  4. Alabuzhev, A.A., Translational Oscillations of a Cylindrical Drop in a Bounded Volume of Fluid, Comput. Contin. Mech., vol. 9, no. 4, pp. 453-465, 2016c.

  5. Alabuzhev, A.A. and Kashina, M.A., The Oscillations of Cylindrical Drop under the Influence of a Nonuniform Alternating Electric Field, J. Phys. Con.f. Ser, vol. 681, p. 012042,2016.

  6. Alabuzhev, A.A. and Kaysina, M.I., The Translational Mode of Natural Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Phys, vol. 1, no. 24, pp. 35-41,2015a.

  7. Alabuzhev, A.A. and Kaysina, M.I., Effect of Motion of the Contact Line on the Axisymmetric Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Phys, vol. 2, no. 30, pp. 56-68, 2015b.

  8. Alabuzhev, A.A. and Kaysina, M.I., The Eigen Azimuthal Vibrations of a Cylindrical Bubble in an Finite Volume Vessel, Bull. Perm Univ. Phys, vol. 3, no. 31, pp. 38-47, 2015c.

  9. Alabuzhev, A.A. and Kaysina, M.I., The Translational Oscillations of a Cylindrical Bubble in a Bounded Volume of a Liquid with Free Deformable Interface, J. Phys. Conf. Ser, vol. 681, p. 012043, 2016.

  10. Alabuzhev, A.A. and Lyubimov, D.V., Behavior of a Cylindrical Drop under Multi-Frequency Vibration, Fluid Dyn, vol. 40, no. 2, pp. 183-192,2005.

  11. Alabuzhev, A.A. and Lyubimov, D.V., Effect of the Contact-Line Dynamics on the Natural Oscillations of a Cylindrical Droplet, J. Appl. Mech. Tech. Phys, vol. 48, no. 5, pp. 686-693, 2007.

  12. Alabuzhev, A.A. and Lyubimov, D.V., Effect of the Contact-Line Dynamics on the Oscillations of a Compressed Droplet, J. Appl. Mech. Tech. Phys, vol. 53, no. 1, pp. 9-19, 2012.

  13. Benilov, E.S., Stability of a Liquid Bridge under Vibration, Phys. Rev. E, vol. 93, no. 6, p. 063118, 2016.

  14. Borkar, A. and Tsamopoulos, J., Boundary-Layer Analysis of the Dynamics of Axisymmetric Capillary Bridges, Phys. Fluids Fluid Dyn, vol. 3, no. 12, pp. 2866-2874, 1991.

  15. Bostwick, J.B. and Steen, P.H., Stability of Constrained Capillary Surfaces, Annu. Rev. Fluid Mech., vol. 47, no. 1, pp. 539-568, 2015.

  16. Chen, C., Zeng, Z., Mizuseki, H., and Kawazoe, Y., Thermocapillary Convection of Liquid Bridge under Axisymmetric Magnetic Fields, Mater. Trans., vol. 49, no. 11, pp. 2566-2571, 2008.

  17. Chen, T.-Y. and Tsamopoulos, J., Nonlinear Dynamics of Capillary Bridges: Theory, J. Fluid Mech., vol. 255, pp. 373-409,1993.

  18. Demin, V.A., Problem of the Free Oscillations of a Capillary Bridge, Fluid Dyn., vol. 43, no. 4, pp. 524-532, 2008.

  19. Fayzrakhmanova, I.S. and Straube, A.V., Stick-Slip Dynamics of an Oscillated Sessile Drop, Phys. Fluids, vol. 21, no. 7, p. 072104, 2009.

  20. Fayzrakhmanova, I.S., Straube, A.V., and Shklyaev, S., Bubble Dynamics Atop an Oscillating Substrate: Interplay of Compressibility and Contact Angle Hysteresis, Phys. Fluids, vol. 23, no. 10, p. 102105, 2011.

  21. Ferrera, C., Cabezas, M.G., and Montanero, J.M., An Experimental Analysis of the Linear Vibration of Axisymmetric Liquid Bridges, Phys. Fluids, vol. 18, no. 8, p. 082105, 2006.

  22. Ferrera, C., Herrada, M.A., and Montanero, J.M., Analysis of a Resonance Liquid Bridge Oscillation on Board of the International Space Station, Eur. J. Mech.-B/Fluids, vol. 57, pp. 15-21, 2016.

  23. Hocking, L.M., The Damping of Capillary-Gravity Waves at a Rigid Boundary, J. Fluid Mech., vol. 179, pp. 253-266, 1987.

  24. Kartavykh, N.N. and Shklyaev, S.V., On the Parametric Resonance of a Semicylindrical Drop on an Oscillating Solid Substrate, Bull. Perm Univ. Phys, vol. 1, no. 6, pp. 23-28,2007.

  25. Kaysina, M.I., Azimuthal Modes of Eigen Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Math. Mech. Comput. Sci., vol. 2, no. 29, pp. 37-45,2015, accessed June 7,2017, from http://vestnik.psu.ru/docs/2015/274/20152421.doc.

  26. Khenner, M.V., Lyubimov, D.V., Belozerova, T.S., and Roux, B., Stability of Plane-Parallel Vibrational Flow in a Two-Layer System, Eur. J. Mech.-B/Fluids, vol. 18, no. 6, pp. 1085-1101, 1999.

  27. Klingner, A., Buehrle, J., and Mugele, F., Capillary Bridges in Electric Fields, Langmuir, vol. 20, no. 16, pp. 6770-6777, 2004.

  28. Kumar, K. and Tuckerman, L.S., Parametric Instability of the Interface between Two Fluids, J. Fluid Mech., vol. 279, pp. 49-68, 1994.

  29. Kumar, S., Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines, Annu. Rev. Fluid Mech., vol. 47, no. 1,pp. 67-94,2015.

  30. Langbein, D., Falk, F., and GroBbach, R., Oscillations of Liquid Columns under Microgravity, Adv. Space Res., vol. 16, no. 7, pp. 23-26, 1995.

  31. Lyubimov, D.V. and Cherepanov, A.A., On the Nonlinear Theory of Parametrically Excited Waves on the Surface of a Viscous Fluid, in Some Problems of Stability of a Liquid Surface, Sverdlovsk, Russia: Institute of Continuous Media Mechanics, pp. 54-76, 1984.

  32. Lyubimov, D.V., Khenner, M.V., and Shotz, M.M., Stability of a Fluid Interface under Tangential Vibrations, Fluid Dyn., vol. 33, no. 3, pp. 318-323, 1998.

  33. Lyubimov, D.V., Lyubimova, T.P., and Cherepanov, A.A., Dinamika Poverkhnostey Razdela v Vibratsionnykh Poliakh, Moscow, Russia: FIZMATLIT, 2003.

  34. Mampallil, D., Burak Eral, H., Staicu, A., Mugele, F., and van den Ende, D., Electrowetting-Driven Oscillating Drops Sandwiched between Two Substrates, Phys. Rev. E, vol. 88, no. 5, p. 053015,2013.

  35. Martin, E., Martel, C., and Vega, J.M., Drift Instability of Standing Faraday Waves, J. Fluid Mech, vol. 467, pp. 57-79, 2002.

  36. Martinez, I. and Eyer, A., Liquid Bridge Analysis of Silicon Crystal Growth Experiments under Microgravity, J. Cryst. Growth, vol. 75, no. 3, pp. 535-544, 1986.

  37. Martinez, I., Perales, J.M., and Meseguer, J., Non-Linear Response of a Liquid Bridge to a Sinusoidal Acceleration under Micro- gravity, Exp. Fluids, vol. 37, no. 6, pp. 775-781,2004.

  38. Meseguer Ruiz, J., Perales Perales, J.M., Martinez Herranz, I., Bezdenejnykh, N.A., and Sans, A., Hydrostatic Instabilities in Floating Zone Cristal Growth Process, Curr. Top. Cryst. Growth Res., vol. 5, pp. 27-42, 1999.

  39. Miles, J. and Henderson, D., Parametrically Forced Surface Waves, Annu. Rev. Fluid Mech., vol. 22, no. 1, pp. 143-165,1990.

  40. Mollot, D.J., Tsamopoulos, J., Chen, T.-Y., and Ashgriz, N., Nonlinear Dynamics of Capillary Bridges: Experiments, J. Fluid Mech., vol. 255, pp. 411-435, 1993.

  41. Montanero, J.M., Linear Dynamics of Axisymmetric Liquid Bridges, Eur. J. Mech.-B/Fluids, vol. 22, no. 2, pp. 167-178, 2003.

  42. Montanero, J.M., Influence of the Outer Bath on the Eigenfrequencies of Rotating Axisymmetric Liquid Bridges, Theor. Comput. Fluid Dyn, vol. 17, no. 3, pp. 213-223, 2004.

  43. Montanero, J.M., Ferrera, C., and Shevtsova, V.M., Experimental Study of the Free Surface Deformation due to Thermal Convection in Liquid Bridges, Exp. Fluids, vol. 45, no. 6, pp. 1087-1101, 2008.

  44. Morse, S.F., Thiessen, D.B., and Marston, P.L., Capillary Bridge Modes Driven with Modulated Ultrasonic Radiation Pressure, Phys. Fluids, vol. 8, no. 1, pp. 3-5,1996.

  45. Nayfeh, A.H., Perturbation Methods, Wiley Classics Library, New York: John Wiley & Sons, 2000.

  46. Nevolin, V.G., Parametric Excitation of Surface Waves, J. Eng. Phys., vol. 47, no. 6, pp. 1482-1494, 1984.

  47. Rivas, D. and Meseguer, J., One-Dimensional Self-Similar Solution of the Dynamics of Axisymmetric Slender Liquid Bridges, J. Fluid Mech., vol. 138, pp. 417-429,1984.

  48. Shklyaev, S., Alabuzhev, A.A., and Khenner, M., Influence of a Longitudinal and Tilted Vibration on Stability and Dewetting of a Liquid Film, Phys. Rev. E, vol. 79, no. 5, p. 051603,2009.

  49. Shklyaev, S., Alabuzhev, A.A., and Khenner, M., Marangoni Convection in a Thin Film on a Vertically Oscillating Plate, Phys. Rev. E, vol. 92, no. 1, p. 013019, 2015.

  50. Shklyaev, S. and Straube, A.V., Linear Oscillations of a Compressible Hemispherical Bubble on a Solid Substrate, Phys. Fluids, vol. 20, no. 5, p. 052102,2008.

  51. Sorokin, V.I., On the Effect of the Spouting of Drops from the Surface of a Vertically Oscillating Liquid, Acoust. Phys., vol. 3, no. 3, pp. 262-273,1957, accessed August 7, 2017, from http://www.akzh.ru/pdf/1957_3_262-273.pdf.

  52. Talib, E., Jalikop, S.V., and Juel, A., The Influence of Viscosity on the Frozen Wave Instability: Theory and Experiment, J. Fluid Mech., vol. 584, pp. 45-68, 2007.

  53. Talib, E. and Juel, A., Instability of a Viscous Interface under Horizontal Oscillation, Phys. Fluids, vol. 19, no. 9, p. 092102,2007.

  54. Thiessen, D.B., Marr-Lyon, M.J., and Marston, P.L., Active Electrostatic Stabilization of Liquid Bridges in Low Gravity, J. Fluid Mech., vol. 457, pp. 285-295, 2002.

  55. Tsamopoulos, J., Chen, T.-Y., and Borkar, A., Viscous Oscillations of Capillary Bridges, J. Fluid Mech., vol. 235, pp. 579-609, 1992.

  56. Vega, E.J., Montanero, J.M., Ferrera, C., and Herrada, M.A., An Experimental Technique to Produce Micrometer Waves on a Cylindrical Sub-Millimeter Free Surface, Meas. Sci. Technol., vol. 25, no. 7, p. 075303, 2014.

  57. Ward, T. and Walrath, M., Electrocapillary Drop Actuation and Fingering Instability in a Planar Hele-Shaw Cell, Phys. Rev. E, vol. 91, no. 1,p. 013012,2015.

  58. Wei, W., Thiessen, D.B., and Marston, P.L., Hysteresis and Mode Coupling in Capillary Bridge Oscillations: Observations, Phys. Rev. E, vol. 72, no. 6, p. 067304, 2005.

  59. Yano, T. and Nishino, K., Effect of Liquid Bridge Shape on the Oscillatory Thermal Marangoni Convection, Eur. Phys. J. Spec. Top, vol. 224, no. 2, pp. 289-298, 2015.

  60. Yoshikawa, H.N. and Wesfreid, J.E., Oscillatory Kelvin-Helmholtz Instability. Part 1. A Viscous Theory, J. Fluid Mech., vol. 675, pp. 223-248,2011.

  61. Zayas, F., Alexander, J.I.D., Meseguer, J., and Ramus, J.-F., On the Stability Limits of Long Nonaxisymmetric Cylindrical Liquid Bridges, Phys. Fluids, vol. 12, no. 5, pp. 979-985, 2000.

  62. Zhang, Y., Huang, H., Zhang, X., Zou, Y., and Tang, S., The Effect of Aspect Ratio and Axial Magnetic Field on Thermocapillary Convection in Liquid Bridges with a Deformable Free-Surface, Eng. Appl. Comput. Fluid Mech., vol. 10, no. 1, pp. 17-29, 2016.

ЦИТИРОВАНО В
  1. Alabuzhev A A, The Influence of a Heterogeneous Surface on the Free Volume Oscillations of an Oblate Gas Bubble, Journal of Physics: Conference Series, 1945, 1, 2021. Crossref

  2. Kashina M A, Alabuzhev A A, The deformed oblate drop’s free translational oscillations, Journal of Physics: Conference Series, 2317, 1, 2022. Crossref

  3. Alabuzhev A A, Influence of substrate properties on a fluid drop’s free translational oscillations, Journal of Physics: Conference Series, 2317, 1, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain