Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 47, 2020 Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i1-3.240
pages 239-250

The Effect of Manifold Cross-Flow on the Discharge Coefficient of Sharp-Edged Orifices

P. A. Strakey
Air Force Research Laboratory, Edwards Air Force Base, California, USA
K. M. Olson
USAF Phillips Laboratory
Douglas Talley
USAF Research Lab, CA, USA

Краткое описание

The objective of this study is to determine the effect of manifold cross flow on the discharge coefficient and cavitation characteristics of sharp-edged orifices over a wide range of flow-rates, back pressures and cross flow velocities. The orifice geometries studied cover a range of orifice diameters, length to diameter ratios and orifice angles characteristic of impinging element liquid rocket injectors. Experimental results for orifice angles at 90° with respect to the manifold are presented here. Along with the experimental effort, an analytical model is being developed. The model predicts the discharge coefficient for a sharp edged orifice over a wide range of flow regimes including cavitating and non-cavitating flow, and for a wide range of orifice geometries. The analytical model generally shows good agreement with the experimental data over the range of conditions studied here. The model also closely follows the experimental data for cavitating flow except when the orifice length to diameter ratio is small, in which case the model overpredicts the discharge coefficient.


Articles with similar content:

THE EFFECT OF MANIFOLD CROSS-FLOW ON THE DISCHARGE COEFFICIENT OF SHARP-EDGED ORIFICES
Atomization and Sprays, Vol.9, 1999, issue 1
Douglas Talley, P. A. Strakey
SPREADING ANGLE AND CENTERLINE VARIATION OF DENSITY OF SUPERCRITICAL NITROGEN JETS
Atomization and Sprays, Vol.12, 2002, issue 1-3
Michael Oschwald
EFFECT OF NOZZLE GEOMETRY ON BREAKUP LENGTH AND TRAJECTORY OF LIQUID JET IN SUBSONIC CROSSFLOW
Atomization and Sprays, Vol.21, 2011, issue 10
Baafour Nyantekyi-Kwakye, Madjid Birouk, Neil Popplewell
NUMERICAL STUDIES OF THE FLOW STRUCTURE IN THE FINAL DISCHARGE ORIFICE OF EFFERVESCENT ATOMIZER
Atomization and Sprays, Vol.22, 2012, issue 3
Lingyong Pan, Gang Yang, Baoren Li
ON THE SHEET BREAKUP OF DIRECT-INJECTION GASOLINE PRESSURE-SWIRL ATOMIZER SPRAYS
Atomization and Sprays, Vol.17, 2007, issue 6
P. W. Loustalan, Martin H. Davy