Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v26.i5-6.140
pages 742-757

The Reflection Principle in Two-Dimensional Boundary-Value Problems for the Helmholtz Equation

A. M. Gomilko
Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Victor T. Grinchenko
Institute of Hydromechanics, National Academy of Science of Ukraine, Kyiv, Ukraine
Ye. V. Lobova
Fluid Mechanics Institute, Ukrainian Academy of Sciences, Kiev, Ukraine

Краткое описание

The possibility of employing the principle of reflection in constructing solutions and internal and external boundary-value problems for the Helmholtz equation in two-dimensional domains whose boundaries contain rectilinear segments is analyzed. The principal idea of the approach consists in extending the desired solution in a canonical domain such as a circle by employing the reflection principle for solving the Helmholtz equation through the rectilinear segments of the boundary (at homogeneous boundary conditions). In this case the solution of the boundary-value problem is expressed in terms of series in particular solutions of the Helmholtz equation in polar coordinates; the unknown coefficients of this series can be found from an infinite set of linear algebraic equations. The closure equations at the segments of the circle that do not serve as physical boundaries of the original domain are formulated here by reflection of the desired equation. Various examples of boundary-value problems for the Helmholtz equation for a rectilinear-circular lune (internal and external problems) are analyzed. The manner in which allowance can be made for local singularities of the wave field associated with corner points of the domain under study and the mixed nature of the boundary conditions is shown. Numerical computations that verify the suggested method are performed for one of the problems.


Articles with similar content:

Numerical-Analytical Computation Method for Cutoff Wavenumbers of Waveguides with Complicated Cross-Section
Telecommunications and Radio Engineering, Vol.61, 2004, issue 1
Victor Ivanovich Tkachenko, N. G. Don, A. Ye. Poyedinchuk
RESONANT CAVITIES IN THE FORM OF BODIES OF REVOLUTION OF COMPLEX GEOMETRY: A NUMERICAL ALGORITHM FOR CALCULATING THE SPECTRUM
Telecommunications and Radio Engineering, Vol.69, 2010, issue 4
A.Ye. Poedinchuk, I. K. Kuzmichev, A. Yu. Popkov
SYSTEMS APPROACH TO INVESTIGATING PRE-FRACTAL DIFFRACTION GRATINGS
Telecommunications and Radio Engineering, Vol.71, 2012, issue 6
G. I. Koshovy
Analytical Regularization of Dual Series Equations in the Basis of Prolate Angular Spheroidal Functions
Telecommunications and Radio Engineering, Vol.55, 2001, issue 10-11
V. N. Koshparyonok
SCATTERING OF H-POLARIZED WAVES BY PRE-FRACTAL DIFFRACTION GRATINGS
Telecommunications and Radio Engineering, Vol.71, 2012, issue 11
G. I. Koshovy