Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Interfacial Phenomena and Heat Transfer
ESCI SJR: 0.146

ISSN Печать: 2169-2785
ISSN Онлайн: 2167-857X

Open Access

Interfacial Phenomena and Heat Transfer

DOI: 10.1615/InterfacPhenomHeatTransfer.2019030703
pages 451-467


Sauro Filippeschi
Department of Energy, Systems, Land and Construction Engineering, University of Pisa, Italy
Mauro Mameli
Department of Energy, Systems, Land and Construction Engineering, University of Pisa, Italy
Paolo Di Marco
Department of Energy, Systems, Constructions and Territory Engineering, University of Pisa, largo Lucio Lazzarino 1, 56122 PISA Italy

Краткое описание

Phase Change Materials PCMs (e.g. paraffin waxes, fused silica salts or polyethylene glycol) can be successfully used for the thermal management and the heat storage for ground and space applications. Open cell metal foams embedded in the PCM material increase the overall thermal conductivity and accelerate the melting process. The literature shows that the pore size and the relative density strongly affect the melting process performances. The most of works show as the high thermal conductivity of the open cell metal foam dominates the melting process. Natural convection effect usually is attenuated but it can be relevant if occurs. An experimental activity has been designed and carried out under the framework of the European Space Agency student programme Spin Your Thesis 2017 (SYT-2017) to analyze the effect of different hyper gravity levels and configurations on the melting performance of a composite aluminum foam (10 PPI)/paraffin wax material at two different heat fluxes. The gravity level ranges from 5g up to 20g by means of the Large Diameter Centrifuge. The effect of gravity on the melting process has been investigated by measuring the melting time and the dynamic evolution of the melted area. The experiments show as the hyper gravity condition accelerates the melting process: it is 12% faster ranging from 5g to 10 g. The IR visualization allowed the definition of the melting front dynamic evolution. A natural convection regime is observed in all the experiments. The natural convection incipience accelerates the melting process. A critical analysis of the scaling criterion in the literature has been qualitatively done and a modified Rayleigh number is proposed to


  1. Al-Jethelah, M., Tasnim, S.H., Mahmud, S., and Dutta, A., Melting of Nano-PCM in an Enclosed Space: Scale Analysis and Heatline Tracking, Int. J. Heat Mass Transf., vol. 119, pp. 841–859, 2018.

  2. Asako, Y. and Faghri,M., Effect of Density Change on Melting of Unfixed Rectangular Phase-ChangeMaterial under Low-Gravity Environment, Numer. Heat Transf., Part A, vol. 36, no. 8, pp. 825–838, 1999.

  3. Asako, Y., Gonc¸alves, E., Faghri, M., and Charmchi, M., Numerical Solution of Melting Processes for Fixed and Unfixed Phase Change Material in the Presence of Magnetic Field-Simulation of Low-Gravity Environment, Numer. Heat Transf., Part A, vol. 42, no. 6, pp. 565–583, 2002.

  4. Baby, R. and Balaji, C., Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM based Heat Sink, Int. Commun. Heat Mass Transf., vol. 46, pp. 27–30, 2013.

  5. Chen, Z., Gao, D., and Shi, J., Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale, Int. J. Heat Mass Transf., vol. 72, pp. 646–655, 2014.

  6. Cheng, P., Constant Surface Heat Flux Solutions for Porous Layer Flows, in Letters in Heat and Mass Transfer, Oxford, UK: Pergamon Press, vol. 4, pp. 119–128, 1977.

  7. Di Giorgio, P., Iasiello, M., Viglione, A., Mameli, M., Filippeschi, S., Di Marco, P., Andreozzi, A., and Bianco, N., Embedded Paraffin/Metal Foam Composite for Thermal Storage in Microgravity Conditions, J. Phys. Conf. Ser., vol. 796, no. 1, 2017.

  8. Fan, L. and Khodadadi, J.M., Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review, Renewable Sustainable Energy Rev., vol. 15, no. 1, pp. 24–46, 2011.

  9. Gulfam, R., Zhang, P., and Meng, Z., Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review, Appl. Energy, vol. 238, pp. 582–611, 2019.

  10. Hale, D., Hoover, H., and O’Neill, M., Phase Change Materials Handbook, National Aeronautics and Space Administration, Washington, DC, NASA Tech. Rep. CR-61363, 1971.

  11. Jany, P. and Bejan, A., Scaling Theory of Melting with Natural Convection in an Enclosure, Int. J. Heat Mass Transf., vol. 31, pp. 1221–1235, 1988.

  12. Kazmierczak, M., Poulikakos, D., and Pop, I., Melting from a Flat Plate Embedded in a Porous Medium in the Presence of Steady Natural Convection, Numer. Heat Transf., vol. 10, pp. 571–581, 1986.

  13. Khudhair, A.M. and Farid, M.M., A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials, Energy Convers. Manage., vol. 45, no. 2, pp. 263–275, 2004.

  14. Lafdi, K., Mesalhy, O., and Shaikh, S., Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials, J. Appl. Phys., vol. 102, no. 8, pp. 1–6, 2007.

  15. Liu, Z., Yao, Y., and, Wu, H., Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage, Appl. Energy, vol. 112, pp. 1222–1232, 2013.

  16. Malik, M., Dincer, I., and Rosen, M.-A., Review on Use of Phase Change Materials in Battery Thermal Management for Electric and Hybrid Electric Vehicles, Int. J. Energy Res., vol. 40, pp. 1011–1031, 2016.

  17. Mancin, S., Diani, A., Doretti, L., Hooman, K., and Rossetto, L., Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Embedded in Copper Foams, Int. J. Therm. Sci., vol. 90, pp. 79–89, 2014.

  18. Mondal, S., Phase Change Materials for Smart Textiles—An Overview, Appl. Therm. Eng., vol. 28, no. 11, pp. 1536–1550, 2008.

  19. Mulligan, J.C., Colvin,D.P., and Bryant, Y.G., Microencapsulated Phase-Change Material Suspensions for Heat Transfer in Spacecraft Thermal Systems, J. Spacecraft Rockets, vol. 33, no. 2, pp. 278–284, 1996.

  20. Nazir, H., Batool, M., Osorio, F.J.B., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Arunachala, I., and Kannan, M., Recent Developments in Phase Change Materials for Energy Storage Applications: A Review, Int. J. Heat Mass Transf., vol. 129, pp. 491–523, 2019.

  21. Siahpush, A., O’Brien, J., and Crepeau, J., Phase Change Heat Transfer Enhancement Using Copper Porous Foam, J. Heat Transf., vol. 130, pp. 1–11, 2008.

  22. Srivatsa, P., Baby, R., and Balaji, C., Numerical Investigation of PCM based Heat Sinks with Embedded Metal Foam/Crossed Plate Fins, Numer. Heat Transf., Part A, vol. 66, pp. 1131–1153, 2014.

  23. Sun, X., Zhang, Q., Medina, M.A., and Lee, K.O., Experimental Observations on the Heat Transfer Enhancement Caused by Natural Convection during Melting of Solid–Liquid Phase Change Materials (PCMs), Appl. Energy, vol. 162, no. 15, pp. 1453–1461, 2016.

  24. Van Loon, J.J.W.A., Krouse, J., Kunha, U., Goncalves, J., Almeida, H., and Schiller, P., The Large Diameter Centrifuge, LDC, for Life and Physical Sciences and Technology, in Proc. of Life in Space for Life on Earth Symposium, Angers, France, June 22–27, 2008.

  25. Wang, C., Lin, T., Li, N., and Zheng, H., Heat Transfer Enhancement of Phase Change Composite Material: Copper Foam/Paraffin, Renewable Energy, vol. 96, pp. 960–965, 2016a.

  26. Wang, Z., Zhang, Z., Jia, L., and Yang, L., Paraffin and Paraffin/Aluminum Foam Composite Phase Change Material Heat Storage Experimental Study based on Thermal Management of Li-Ion Battery, Appl. Therm. Eng., vol. 78, pp. 428–436, 2016b.

  27. Xiao, X., Zhang, P., and, Li, M., Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material, Appl. Energy, vol. 112, pp. 1357–1366, 2013.

  28. Zhao, C.Y. and Wu, Z.G., Heat Transfer Enhancement of High Temperature Thermal Energy Storage Using Metal Foams and Expanded Graphite, Sol. Energy Mater. Sol. Cells, vol. 95, no. 2, pp. 636–643, 2011.