RT Journal Article ID 6ef9ef015f117ee3 A1 Dejam, Morteza T1 THE ROLE OF FRACTURE CAPILLARY PRESSURE ON THE BLOCK-TO-BLOCK INTERACTION PROCESS JF Journal of Porous Media JO JPM YR 2018 FD 2018-10-18 VO 21 IS 11 SP 1121 OP 1136 K1 fracture capillary pressure K1 capillary continuity K1 block-to-block interaction K1 oil recover K1 numerical simulation AB Characterization of fractures and the study of multiphase fluid movement through fractures in fractured porous media present difficult challenges to reservoir engineering. Interaction between porous matrix blocks and fractures plays a significant role in oil recovery from double-porosity reservoirs. The block-to-block interaction (or capillary continuity) between porous matrix blocks is a key contributor to the gas-oil gravity drainage mechanism in the gas-invaded zone of naturally fractured reservoirs, which increases the oil recovery. In a continuum scale, fracture is a part of the stack of blocks where there is a pressure difference between the gas and oil phases inside the fracture (called fracture capillary pressure). However, the physics of this capillary pressure and how it affects the gravity drainage mechanism in a stack of porous matrix blocks through the block-to-block interaction process need to be addressed theoretically. In this work a direct fine-grid numerical simulation along with various fracture capillary pressure models, including zero, constant, and saturation-dependent Brooks and Corey (1964), van Genuchten (1980), and Dindoruk and Firoozabadi (1995) functions, are applied to study their influence on oil recovery and therefore the block-to-block interaction process in fractured porous media. Numerical simulation predictions show the positive effect of fracture capillary pressure on oil recovery of a stack porous matrix blocks. The results reveal that the zero fracture capillary pressure model results in a lower ultimate oil recovery factor (23.8%) as compared to the constant (25.8%) and saturation-dependent Brooks and Corey (1964) (28.1%), van Genuchten (1980) (27.5%), and Dindoruk and Firoozabadi (1995) (24.6%) models. These observations are in good agreement with the results in literature. The findings can improve our understanding of the role of fracture capillary pressure on the block-to-block interaction process, which is important in oil recovery from naturally fractured reservoirs using the gravity drainage mechanism. PB Begell House LK https://www.dl.begellhouse.com/journals/49dcde6d4c0809db,289cf53b0214cfbb,6ef9ef015f117ee3.html