Доступ предоставлен для: Guest
TSFP DL Home Архив Исполнительный Комитет

ON REFORMULATING THE ERM-BASED SECOND-MOMENT CLOSURE TOWARDS A MORE ROBUST TURBULENCE MODEL

J. Hui
Department of Mechanical Engineering, Keio University Hiyoshi 3-14-1, Yokohama, Japan

Shinnosuke Obi
Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Suad Jakirlic
Department of Mechanical Engineering Institute of Fluid Mechanics and Aerodynamics (SLA) / Center of Smart Interfaces (CSI) Technische Universitat Darmstadt Petersenstrasse 17, D-64287 Darmstadt, Germany

Аннотация

The present study considers a reformulation of the Durbin's (1993) ERM-based second-moment closure model aiming at reduction of the numerical stiffness originating from the wall boundary conditions. The reformulation performed represents an analogy to the procedure Hanjalic et al. (2004) proposed when deriving the eddy-viscosity-based ζ − ƒ model. The presently reformulated model alternatively solves the transport equations for the ratio of the Reynolds stress components to turbulent kinetic energy ζij = uiuj/k, instead of equations governing the Reynolds stress tensor. It is believed that the boundary conditions of the newly derived elliptic relaxation equations will contribute to the numerical robustness of the model with respect to the immediate wall vicinity. Another advantage, analogously to the Hanjalic's et al. ζ − ƒ model, is the appearance of the Reynolds stress production rate (representing an exact formulation) in the ζij equations instead of dissipation rate ε (originating from the corresponding model equation). Application of the present model formulation to a plane channel flow in a range of Reynolds numbers up to Reτ = 2003 results in a good agreement with available DNS database.