Доступ предоставлен для: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

RADIATION FROM TURBULENT DIFFUSION FLAMES

pages 1-38
DOI: 10.1615/AnnualRevHeatTransfer.v2.30
Get accessGet access

Краткое описание

The thermal radiation properties of nonluminous and luminous turbulent diffusion flames are reviewed, considering: the scalar structure of flames, excluding soot; soot properties of luminous flames; and turbulence/radiation interactions. Progress has been greatest for nonluminous flames. Scalar structure needed to analyze radiation properties is generally estimated using the laminar flamelet concept, e.g., approximating turbulent flames as wrinkled laminar flames, noting that the scalar properties of laminar flames are nearly universal functions of fuel-equivalence ratio. Estimates of spectral radiation intensities and radiative heat fluxes based on these ideas are typically within 20−30 percent of measurements. Extension of the laminar flamelet concept to the properties of soot which influence radiation from luminous flames has been studied. There is some evidence to support the extension and radiation predictions based on this idea; however, additional evaluation of the concept is needed. Turbulence/radiation interactions have been studied using stochastic analysis. The effects of turbulence/radiation interactions are most significant for luminous flames, where turbulent fluctuations can increase heat fluxes up to 2−3 times higher than estimates based on mean properties.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain