Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции


DOI: 10.1615/AnnualRevHeatTransfer.2014007292
pages 147-176

Yann Chalopin
Laboratoire d'Energtique Moléculaire et Macroscopique, Combustion, UPR CNRS 288, Ecole Centrale Paris, France

Ali Rajabpour
Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34149-16818, Iran

Haoxue Han
Laboratoire d'Energtique Moleculaire et Macroscopique, Combustion, UPR CNRS 288, Ecole Centrale Paris, France

Yuxiang Ni
Southwest Jiaotong University

Sebastian Volz
LIMMS/CNRS-IIS(UMI2820), Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 Japan; Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion, UPR CNRS 288, CentraleSupélec, Université Paris-Saclay, Bat. Eiffel, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex - France

Ключевые слова: Kapitza Resistance, Interface, Transmission, Carbon Nanotubes, Silicon, Germanium


In this chapter, we aim at presenting recent techniques based on an atomic-scale direct simulation, i.e., the equilibrium molecular dynamics (EMD) technique, allowing the estimation of interfacial thermal resistance and phonon transmission. EMD relies on the "natural" fluctuations of the quantities computed in a system that freely evolve with given interaction potentials and boundary conditions. It allows the treatment of small-size systems as well as of averaged microscopic quantities that cannot be excited macroscopically based on nonequilibrium approaches. Interfacial thermal resistance and phonon transmission in nanoscale or molecular systems are two of those quantities. The theoretical derivations of the interfacial resistance and phonon transmission in terms of the microscopic quantities are presented, and three applications of those latter formula including argon:heavy argon, Si:Ge, and CNT:Si interfaces are presented.

ARHT Digital Library