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This paper focuses on the Gaussian process regression (GPR) of nonlinear functions subject to mul-
tiple linear constraints such as boundedness, monotonicity or convexity. It presents an algorithm
allowing for the optimization, in a concerted way, of the statistical moments of the Gaussian process
used for the regression and the position of a reduced number of points where the constraints are re-
quired to hold, such that the constraints are verified in the whole input space, with high probability,
at a reasonable computational cost. After having presented the theoretical bases and the numerical
implementation of this algorithm, this paper illustrates its efficiency through the analysis of several
test functions of increasing dimensions.
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1. INTRODUCTION

The conception and the certification of complex systemsgusimulation are generally based on
the evaluation of computer codes in a very high number oftippints. In this work, we focus
on the analysis of one of these system, whose propertiesecaharacterized by a vector éf
continuous parameters, = (z1,...,74,) € X C R%, and we denote by the measurable
function defined orX that is used to monitor the good functioning of this systemmdfiony is
considered as the output of a computationally expensivarghnistic “black box,” in the sense
that for everyzr in X, y(x) is unique, and it can be calculated using a time consumingaten
code.

As each evaluation af is time consuming, the fine exploration of input sp&ceannot be
done using; directly, but it is necessary to associate a surrogate ntodtehs it is done in Perrin
(2021). Among these surrogate modeling techniques, thestauprocess regression (GPR), or
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kriging, plays a central role, which is due in particulartgxdapacity to associate in a very natural
way a confidence to the predictions it returns (Fang et ab628ennedy and O’Hagan, 2001;
Sacks et al., 1989; Santner et al., 2003). In a classical thaygonstruction of a GPR model
relies on the evaluation af at a well-chosen set of points K. Nevertheless, it often happens
that the modeler manipulating the code also wants to inchadiina priori knowledge about
the behavior of the system in the construction of the GPRekample, such constraints can be
associated with underlying physical phenomena when cerieglengineering applications.

The motivations for taking these constraints into accouatraumerous: improvement of
prediction capacities, reduction of uncertainties, wetiglainability of the results, and so on.
Although not suitable for taking into account all types ohstraints, the GPR formalism offers
a very attractive framework for taking into account lineanstraints ony, i.e., constraints that
can be written in the forma(x) < Ly(x) < b(x), wherea, b are two given functions and
is a linear operator. This includes boundedness, monadtgric convexity constraints, but also
constraints based on integral operators and partial diftél equations. Indeed, if functignis
modeled by a Gaussian procesg,is also Gaussian, and its statistical moments can be etkplici
derived from the statistical momentsmf

Several methods for imposing linear constraints on GPs lvarefore be found in the lit-
erature [see Swiler et al. (2020) for a survey]. Among themaegal works strive to ensure the
respect of constraints at all points ¥f(Lopez-Lopera et al., 2018; Maatouk and Bay, 2017).
These approaches are based on a finite dimensional Gaupgiaximation associated with a
structured discretization of the input space. These matsbdw interesting results for exam-
ples in 1D and 2D, while being too time consuming for appiaat in higher dimensions. In
order to tackle problems of larger dimensiods ¢ 2), it was proposed in Riihimki and Vehtari
(2010), Veiga and Marrel (2012), Wang and Berger (2016)eAg2019), and Veiga and Marrel
(2020) to restrict the verification of constraints to a firség of input points, often called virtual
observations. In that case, the respect of the constramiXsis strongly dependent on the posi-
tion of these virtual observations and their numbers. Gaiteere therefore defined to optimize
their positions and numbers and to make the constraintBagm X with high probability at a
reasonable computational cost (i.e., without having tosdbnfill X with virtual observations).

This paper is a continuation of these works, with two ditsi of improvement. First, it
proposes two new criteria for the positioning of virtual ebgtions for a more global and
faster respect of the constraints according to the numbebsérvation points. It then fo-
cuses on the consideration of the constraints for the ffiestion of the statistical properties
of the Gaussian process used for the regression. Few wovksattually addressed this prob-
lem which still remains relatively open. Left as a workinggmective for most of the previ-
ously listed works, the choice of the mean function and dafijgaf the covariance func-
tion of this Gaussian process plays a very important rolé wéspect to the constraints. In-
deed, as we will show in the application part of this papee, thoice of too-small corre-
lation lengths may result in the need to introduce a verydamgmber of virtual observa-
tions for the respect of constraints with sufficient highhability. Conversely, choosing cor-
relation lengths that are too large may make it almost imptesgin probability) to verify
constraints on subsets &. In other words, the choice of these statistical parameatens-
timately linked to the respect of the constraints, and thtengly depends on the positions
of the virtual observations. As the choice of the positiohghe virtual observations is it-
self strongly dependent on the choice of these statistiagdrpeters, it is then proposed in
this paper to identify in a concerted way these statistiegahmeters and these virtual obser-
vations.
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The outline of this work is as follows. Section 2 introducks general framework for car-
rying out a Gaussian process regression in the presenceaifality constraints. The criteria
we propose for the selection of the virtual observationglaea described in Section 3. Section
4 deals with the identification of the statistical momentshef Gaussian process used for the
regression, and Section 5 describes the algorithm we pedjposhe verification of constraints
with high probability using only a reduced number of virtablservations. Numerical applica-
tions are then presented in Section 6, while concluding resrare given in Section 7.

2. GENERAL FRAMEWORK

The formalism of the Gaussian process regression is caesidthe quantity of interesj is
seen as a sample path of a stochastic protedsfined on a probability spa¢€, .A, P), which

is assumed Gaussian for the sake of tractability:x GP(, C), wherep is the mean function
andC is the covariance function df. Let X¥(N) := {(z™,y(z™)),1<n < N} be aN-
dimensional design of experiments (DoE). By conditionindpy the responses afin X(N),
we obtain another Gaussian process, which is nbied= Y|V (X) = y(X) ~ GP(uyn, Cy),
whose mean and covariance functions can be explicitly ddrjgee Sacks et al. (1989) and
Santner et al. (2003) for further details about the expoes$i

uy () = u(@) + C(z, X)0(X, X) H(wX) ~y(X)), zeX 1)

Cy(z,x') = C(z,2') — Oz, X)O(X, X)) 'C(X,2), =,z cX. ()

In the former expressions := [z ... 2T is the(N x d,)-dimensional matrix that
gathers the input points of' (IV), and for each functiorf and g defined onX andX x X
respectively, the following notation is adopted:

(FX))n = f@™), (9(X, X))um = 9(@n, @), 1<n, m<N. (3)

As the time needed to evaluagein each points oft”V is supposed to be very high, the
value of N is assumed to be relatively small. Gaussian prodgssan therefore be used to
predict the value of; in any nonobserved point &f. In particular,uy () is the best linear
unbiased predictor (BLUP) af(x), while C'v (x, ) quantifies the uncertainty associated with
this prediction, in the sense that the smaller it is, the nobiance there is fog(x) andpuy ()
to be close.

In addition to the observation points, we assume we havesa¢ogrior knowledge on some
properties of functiony, which can be written under the form of a linear operaidadopting
the same notations as Agrell (2019)]. For example, the caing$ 0< y, ¢, < Jy/dz; < uy,
0%y/dx;0x; < uz can be written as

(0,45(x), —0) <. Ly(x) <. (+00,uz(x),uz(x)), =X 4)

where’l : y — Ly := (y,dy/dx;,0%y/dx;0z;), and<, stands for the component by compo-
nent inequality operator, such that for twedimensional vectora andb, a <. b is equivalent
toa; < by,...,aq < bg. In particular, this includes boundedness, monotonicitganvexity
constraints ony.

In the following, we denote by, the number of constraints, such that is a function from
R% to R, andf andw are the vector-valued functions that characterize thed@me upper
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bounds forLy (possibly taking infinite values). As the Gaussian distitiiuis stable by linear
operationsLY is still a Gaussian process, with

E[LY (x)] = Lu(z), Cov(LY (x),LY (x')) = LO(x,x')LT. (5)

Here, the notationsC (x, ') andC(x, ') L indicate that operatof is applied as a func-
tion of x andx’, respectively, so that COLY (x), LY (x')) is a(d. x d.)-dimensional matrix.

Integrating these constraints af in the former GP formalism, the new proceg§ :=
YIY(X)=y(X), £ <. LY <. u seems particularly attractive for the predictionyoManip-
ulatingYy is, however, difficult, if not impossible. Indeed, it is sused to take into account an
infinite number of constraints, and evertif Y (X), andLY are Gaussian, there is no reason
for Y5, to still be Gaussian once the inequality constraints ardieghp

Different approaches were proposed to get back to a probiaygrating a finite number of
constraints and therefore circumvent the first difficultg. t®e one hand, it was proposed in Maa-
touk and Bay (2017) and Lopez-Lopera et al. (2018) to apprat@Y” by its finite-dimensional
projection on a tensorized grid &. In that case, the projection functions are deterministie,
projection coefficients are modeled by (potentially catedl) Gaussian random variables, and
the constraints on the entire domain are translated asregriston the projection coefficients
only. However, due to the tensorized structure of the ptmjadunctions, the application of this
approach is limited to very small values®f (generally less than 2).

On the other hand, it was proposed in Veiga and Marrel (204r&) pompleted in Veiga and
Marrel (2020)] to impose constraints only at a finite set ofual observations. In that case, the
constraints are not fulfilled on the entire domain, but onlihva more or less high probability
depending on the number and positions of these virtual atens.

Let Z := [z®;... ; 2(M)] pe the(M x d,)-dimensional matrix gathering the positions of
M virtual observations iX, ande € {1,...,d,}"" be theM-dimensional vector gathering
the indices of the constraints that we want to impose in esment of Z. For instance, for
1<m < Mand1< j <d., choosingx,, = 7 amounts to imposing

(2 < (Ly(2'™)); < uy(2™).

Under that formalism, we denote by

Y]?/,M = Y|Y(X) = y(X)aeoc(Z) <c ACocY(Z) <c uoc(Z)v (6)

the process we would like to consider to predict the valug iof any honobserved point o,
and by
LY n = LYY (X) = y(X),Lx(Z) <c LY (Z) <c ua(Z), (7)

the process we need to manipulate to verify that the constrliave been correctly taken into
account not only at the points i but at any point irX. Here, for all functionsf andg defined
onXandX x X, £4(Z),ux(Z), Lo f(Z),andLg(Z, Z)LL are threeV/-dimensional vectors
and an(M x M)-dimensional matrix, respectively, such that for alktn, m’ < M:

(Laf(Z)m = (Lan (2™),  (Lag(Z, Z)LY)mm = (Lg(z"™, 2" NLT Vo 00 ()

Bl Z))m =L, (2™, (Ul Z)) = ta,, (2™). 9)
Given these notations, the constraints’ probability fiorcp,. is defined by

pe(x) =P (E(a:) <, EYJ@,M(:JS) <. u(a:)) , zeX, (20)
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and, for each K< j < d., the probabilityp? () for LYy () to satisfy thejth constraint is
given by }
pi(z) =P ({;(x) < (LYY p(®)); < uj(x)) - (11)

To analyze the statistical propertiesXof ,, andLYY ,,, let us first consider the following
random vector:

L(Z) := LaY(2)]Y (X) = y(X), £a(Z) <c L&Y (Z) <c ua(Z). (12)

By constructionL(Z) follows the truncated normal distributiohiV (1, Cr, €(Z), uw(Z)),
with
up = Lat(2) + LoaC(Z, X)0(X, X) 7 (y(X) — n(X)), (13)
CL:=LsC(Z,Z)LT - £L,C(Z,X)0(X,X)C(X,2Z)LT, (14)
in the sense that its probability density function (PO¥)verifies the following proportionality
relation:

2

Looking at Propositions 2.1 and 2.2 (see Appendix A and AdpeB for the proofs), we
therefore notice that this vectdi(Z) plays a major role in the analysis of proces$&s,,
andLYy ,,, as there are affine transforms between the mean and thes@dY’y ,,(x) and
LY% 1, (x) and the mean vector and the covariance matrik @), but also between the realiza-
tions of L(Z) and the realizations df ,,(z) andLY ,,(x). The fact that we can efficiently
generate independent realizations of non-Gaussian mesgs§ ,, andLYy ,, indeed plays a
central role in the following developments. On the one hamig,will allow the construction of
empirical prediction intervals for the value gfat any point ofX. On the other hand, it will
allow the identification of subdomains &fwhere the constraints are most likely to be violated
but also the estimation of average values a¥ef verifying the constraints.

1 _
fL(v) o< Ly zy< v< u(z) €XP (—(’U —up)"Cpt (v - HL)) , veRM, (15)

Proposition 2.1. For allz, 2’ € X, if ny(Z) andC«(Z) correspond to the mean vector and
the covariance matrix ak(Z), we obtain

E Yy u(®)] = @) + af (2)(y(X) — (X)) + a3 (@) (ha(Z) — Lait(Z)), (16)
Var (YJ‘\:,W[(:J:)) =C(x,xz) — alT(:c)C(X, x)
— azT(a:)ﬁaC(Z, x) + azT(a:)C“(Z)az(m)
E[LY pr(2)] = Lu(z) + AF (2)(y(X) — m(X)) + A7 (2)(1a(Z) —
Cov (LY (@), LY p(2))) = LC(z, ') LT — A (z)C(X, 2") LT
— A7 (2)LoC(Z,2") LT + A (x)Co(Z) As(2'),

with a;(z) € RY anda,(z) € RM being the two vectors ands(x) and A,4(x) being the two
matrices that verify

<a1(w)>:{ C(X.X) C(X,2z)C] }1< C(X.z ) (20)

(7)
Lan(Z)), (18)

(19)

az(x) LoC(Z,X) LC(Z,2Z)CE

( i ) = [ Li(C)((X))() Lg(c}((zzggg ]_1< Cx @)L ) 21)
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Proposition 2.2. Let1®, ... 1(?) be Q-independent realizations di(Z), £V, ..., &(@) be
Q-independent realizations of a centered Gaussian randtue @& variance equal to 1, and
C(l), e {9 pe Q-independent realizations of &-dimensional centered Gaussian random
vector whose covariance matrix is the identity matrix. THeneachx € X and each K ¢ <

@,

n(@) + af (z)(y(X) — (X)) + a3 (2)1@ ~ Lan(Z))

(22)
+ \/C(:c, x) —al (z)C(X,x) — al (x)LoC(Z,x)E D,
is an independent realization Bf; ,,(z), and
Lu(®) + As(@)" (y(X) = w(X)) + Aa@)" (19 ~ Lan(2)) 23)

+ (LC (2, @) LT — Ag()TC(X, ) LT — ATLLC(Z,2)LT) 2 ),

is an independent realization 6 ,,(z), where for any symmetric square matdi RY?is
a matrix such thaR'/?(RY?)” = R.

Generating realizations dt(Z) [and therefore ol ,,/(z) and LY ,,(z)] is, however,
challenging. Of course, using rejection techniques, thagenerating samples from the uncon-
strained normal distribution/(u,, Cr.) and keeping the ones that verify the constraints, would
be the most natural method to obtain such realizations. iButiore constraint points consid-
ered, and therefore the moké increases, the lower the acceptance rate is likely to betrend
more inefficient the method will be. In that case, alterreativethods have to be employed, such
as the method based on the minimax tilting proposed by Ba@@i/{), which proves to be partic-
ularly efficient for the generation of realizations of trated Gaussian vectors with dimensions
smaller than 200, with acceptance probabilities up to'® For higher dimensions, methods
based on Gibbs sampling Kotecha and Djuric (1999) couldlzdsased, but the convergence of
such methods is likely to require a very significant numéidoat.

Remark2.1 Looking at Proposition 2.2, it is important to notice thag #ame-independent
realizations ofL.(Z) can be used to gé}-independent realizations df; ,,(z) andLYy ()
in any value ofz, and therefore to predict the value gfz) and estimate.(z) or pi(z) in
eachx.

Remark2.2 If z@ ... () areP > 1 elements oK, Proposition 2.2 is easily generalized to
the generation of realizations of the vectdi; ,, (x™), ..., Y5 5 ().

3. SELECTION OF THE VIRTUAL OBSERVATIONS

PredictorE [V ,,(z)] of y(x) depends on two sets of points: the observation points of
gathered inX, and theM virtual observations associated with the constraintsegathinZ.
While the observation points are generally imposed, it issfie to choose the number and
the position of the virtual observations as they do not negany code evaluations. Different
strategies can be proposed to choose these points. Naivelger to allow a verification of the
constraints over the whole input domain, these observatbdnts can be chosen as uniformly
as possible iX. For this, one can then rely on several experiment desighsv@wffray et al.,
2012; Damblin et al., 2013; Fang, 2001; Joseph et al., 20d4®irPand Cannamela, 2017). This
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approach, which will be refered to as space-filing (SF) apphois, however, clearly suboptimal.
Indeed, these points are supposed to allow a maximizatireaonstraints’ probability function
p. defined by Eq. (10). Thus, adding points whexgeis large is of little interest. However,
searching directly for all of these points to maximize thaimial value ofp, overX is generally
far too difficult, and greedy approaches are often prefeffedinstance, following Agrell (2019)
and Veiga and Marrel (2020), given a setMdfvirtual observations already chosen, the+ 1
virtual observationc* associated with thg,th constraint can be chosen as the point with the
best chance of not respecting the constraints, which isclaéien of the following optimization
problem:
(x*,j,) € argwexr&zgx?;gdc alx,j), alz,j):=1-pl(x). (24)

However, it can be noticed that such a pointwise strategy dog take into account in its
selection criteria the fact that the new evaluation poirit lring additional information in its
neighborhood, nor integrate the fact that a constraintrangty or slightly not respected. This
can result in an unintended accumulation of virtual pointthe same area. For example, if we
are interested in a function that is increasing with respeone of its parameters, and that this
function is almost constant over a certain interval, whetékie number of virtual observations
that we place in this zone, the probability of not respectimg monotonicity constraint will
always be close to 50% at any point in this zone. In order tp@se a better treatment of the
constraints on the whole input domain, we can then propdeets on the following enrichment
criterion:

(@4 €arg__max_ ca(@. ) (25)
calw, ) = E [(65(2) = (Y5 0 (@))3) " + (0Y5 (@) — (@) ], (26)

which can be seen as an adaptation of the well-known expenfgdvement (El) selection crite-

rion (Zhan and Xing, 2020) for the selection of virtual obsgions. In Eq. (26), for eachin R,

(2)T := max(0, z), and we have used the conventieno x ®(—o0) = —oo(1— P(+00)) =0

to simplify notations. Thus, for two pointg andz’ such thaty/(z) andp’(z’) are close, the

criterion defined by Eq. (26) allows us to favor the point assied with the strongest nonre-

spect of the constraints. Of course, weights that dependamuld be added to the expressions

provided in Egs. (24) and (26) in the event that one congtimiio be favored over another.
Finally, to better take into account the impact of the additdbf a new virtual observation

on its neighborhood, the criteria andc, defined by Egs. (24) and (26) can be replaced by the

integrated criterial andci" as follows:

de
G, )dx', S, ) = /X (@', §)dx',
i'=1

where the criteria:f’j andcf’j respectively correspond to the critetipandc,, assuming that
the jth constraint has been imposed at virtual observatiorlence, criteriac™ or ¢ can be
seen as average probabilities of nonrespect of the comstr&nowing that a new observation
has been added . This explains that these two criteria need now to be mindahjzvhile we
want to maximize the criteria; andc, proposed in Egs. (24) and (26).
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3.1 Remarks on the Practical Solving of the Optimization Problems

The maximization of criteria@; andc, and the minimization of criteriailnt and ciznt have been
introduced in their continuous form. In the following, th@hdng of these problems will however
be based on discrete approximations of these optimizatioblgms. Focusing first on criteria
c1 Or ¢, the new virtual observatian* and the new constraint will be searched as

*7 b* e ) ] ) 27
(#:3:) V8 cesmagi<d, () @)

wherek is equal to 1 or 25(n) gathers: > 1 points chosen (randomly or not) & and where
we remind that the sampling procedure of Botev (2017) allos/to evaluate; or ¢, in a very
high number of points oK at a reasonable computational cost. Indeet{if . .., 1(?) denote
Q-independent realizations df( Z) such that

(LY (@)),|L(2) =1, Y(X) = y(X) ~ N (m{” (@), (0" @)2) . (28)

Q
~ 5 2B (4@) 0 (Y @) <o uy(@)L(Z) =17, (X) =3(X)) (29)
=1
1 Q u;(z) — m;'q)(x) j(@) — mgq) (z)
N@;—:ll—@( oD (2 >+(I)< oi? (x) )7

(9)
(1o (@M@
O.S.q)(m)

whered and® are respectively the probability density function (PDF)l &ime cumulative den-
sity function (CDF) of a centered Gaussian random variabl@oance 1.

As for the minimization of criteria and b, the couple(z*, j,) will be chosen as the
solution of

", Jx i (2!, 5), k=1or2 (31
(z*,J )Eargzes(gllngjgdc | > | K (.7, (31)
1<)/ <de @/ €8 (n), (2 ,§))#(.])
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The evaluation of criteriora:z’j(ac’,j') requires a little more attention than that of crite-
rion ¢i(x, 7), as it supposes that g3/ + 1)th constraint is imposed im. However, denoting
by 2D, ...,z the elements of(n), it is interesting to notice that, once again, the distri-

bution of the random vectoilY ,,(z),..., LY ,,(™))|L(Z) is Gaussian, such that

onceQ-independent realizations df( Z) have been generated, the evaluationfof (', j) for
eachz # x’ will only be based on the generation of one realizatiorQeindependent one-
dimensional truncated normal Gaussian random variable&hws relatively easy and quick
to do.

4. ESTIMATION OF HYPERPARAMETERS

A key ingredient in the prediction of in each nonobserved value afis the choice of the
mean functiont and, probably even more importantly, of the covariancetione” of Gaussian
processY . For the sake of tractability, parametric representatarsbe chosen for these two
functions. For instancey can be written as a weighted sum of chosen functions, of

K
u(@) =Y Brhi(@) = B h(w), (32)
k=1

with B := (B1,...,Bx) andh(x) := (hi(x),...,hx(x)) being vectors ofK functions such
that Lh; exists. In the same manné&r, can be chosen among a standard parametric class of
covariance functions, such as the square exponential dvitttern families [see Santner et al.
(2003) and Sacks et al. (1989) for more details about thesdida]. Let R be a correlation
function defined orX x X such thatC R(z, =) LT exists, and let- and© be associated hyper-
parameters such that for all =,

C(z, ') = o?R(x,x'; ). (33)

Under that formalism, the prediction gfrequires a prior assessmentff o, ando. One
approach to determing := (f, 0, 0) is to maximize the constrained log-likelihood function
Ly (Bachoc et al., 2019),

YV = arg max Ly, (), (34)

whereL y () corresponds to the evaluationyX) of the log value of the conditional PDF
of Y(X), givenly(Z) <. L&Y (Z) <. uy(Z). Using the Bayes’ theorem, this function can
be written under the form

Ly ar() = Ly(h) ~ log(P(ba(Z) <c LaY (Z) <c ua(Z)) a5
+10g(P(£a(Z) <c LaY (Z) <c ua(Z)|Y (X) = y(X))),
whereL y (1) is the unconstrained log likelihood. Thus, in addition te &stimation of (1),
the computation ofL (1) for each value ofp requires the calculation of the difference
between the prior and posterior, that is integrating thelt@mmingY (X)) = y(X), probabilities
of respecting the constraints. However, as it will be showthie application section, the gain
brought by this hyperparameter identification proceduoth bin terms of constraints respect
and prediction capacity, is often low compared to its nuoadrcost. This explains that many
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papers [see, for instance, Agrell (2019) and Veiga and NM&20)] propose focusing on the
unconstrained log likelihood only. Le™-F be this value ofp that maximized. y. In this case,
the respect of the constraints relies only on the choiceeiMhvirtual observations.
Nevertheless, as we will also see in the application pargrg \arge number of virtual ob-
servation points may be necessary to compensate for ciorelangths chosen too small. And
conversely, if the correlation lengths are too large, thabpbility of respecting the constraints
can be extremely low, which is likely to make the draw of thalimtions of£,Y (Z) very
unstable numerically. To better integrate the constramthe identification ofip, another ap-
proach inspired by the work achieved in Pensoneault et@2qRis now proposed. It consists in
rewriting the identification problem ap in the form of a maximization problem under constraint

max Ly($)  StP(Ea(Z) <c La¥ (Z) <cua(Z)IY(X) =y(X)) 21—V, (36)

with 0 <y < 1 as a chosen tolerance. This problem can then be approaghed b
mqe}xLN(lb) st.forall 1<m < M:

nEYe (2) (CEY«(2)), (ua(Z (37)

£Ya (Z2) / CLY(X(Z)

with ¢* being as a chosen constant axﬁi/“(z) andC*Y«(%) peing the mean vector and covari-
ance matrix of Gaussian random vecfdr, (Z)|Y (X) = y(X). Contrary to the problem given
by Eq. (36), the problem introduced in Eq. (37) no longer nexguthe costly computation of a
probability associated with a truncated Gaussian didiohulndeed, for a given value df, the
expressions of. y (), u£¥«(%), andC*Y«(%) can be explicitly derived for a total calculation
cost close to the evaluation éfy (V) only.

In the following, the approximated solution of problem (8i8)ng an augmented Lagrangian
method is denoted by”" [see Golshtein (1981) for more details about the intereghisf
method for solving constrained optimization problems].

In problem (37), a particular attention has to be paid to tie of ¢*. The greateg* is, the
greater the weight of the constraints will be in comparismthe likelihood. Choosing a large
value forg* (for instance, choosing* = 2), and thus forcing a strict respect of the constraints,
can indeed degrade the predictive capabilities of the mmgstrongly underestimating or over-
estimating the prediction uncertainties. In our opinidns inecessary to keep in mind that the
respect of the constraints relies on two points: the vali#issohyperparameters and the virtual
observations. Thus, it seems to us more judicious to takéua wdi¢* close to 0. This ensures a
reasonable probability of respect of the constraints leedipiplying the constraints in the virtual
points and is likely to lead to a high probability of respetttte constraints once the virtual
observation points will be added. In the following, will be chosen equal to.Q.

5. JOINT IDENTIFICATION OF THE HYPERPARAMETERS AND OF THE VIRTUAL
OBSERVATIONS

Until now, the choice of the\/ virtual observations gathered i@ and the estimation of the
hyperparameterg characterizing the mean and covariance functioli afre carried out inde-
pendently. In Section 3, we explained how we can chdéder a fixed value ofy to impose
constraints orY’. And in Section 4, we proposed several methods to choosethe vf for a
fixed set of virtual observations gathered4n
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In order to maximize the predictive capabilities of the fipeddictor, and to maximize the
probability of respecting the constraints, we now propasadopt a mixed approach based on
an alternation between enrichment Bfand hyperparameter re-estimation. This approach is
summarized in Algorithm 1.

Several advantages can be listed for such an approach.linstogressively increasing the
number of constraints, the numerical cost of estimatindiperparameters under constraints is
limited. Secondly, by continuously adapting the hyperpeeters to the constraints at the virtual
observations, we limit the risk of being confronted with a-fow probability of verifying the
constraints at these points, which allows for an acceldrexecution of the generation proce-
dures presented in Botev (2017).

Remark5.1 In Algorithm 1, the stopping criterion is a threshold on tiverage probability of
respecting all the constraints on the input domain. Needetis, for high dimensional applica-
tions with several constraints, the number of constraimsaequired can be very large, and
the associated generation of realizations of truncateds$ian vectors can be numerically very
or even too difficult, which explains the addition of the sed¢®topping criterion in the num-
ber of maximum constraint poinf&/ ™. Although it is reasonable to expect that the number of
constraint points needed to ens@re< p* grows withd, andd,., the choice of\/™® is rather
constrained by our ability to correctly estimate the prolitstof verifying the constraints at the
constraint points. Following the recommendations praditleBotev (2017) on the stability of
its algorithm,M ™3 can thus be chosempriori equal to 200, whatever the valuedf andd,..

6. APPLICATION

We list at least three objectives for the application sectiirst, we would like to show the cru-
cial role of hyperparameters on taking into account inauebnstraints. It is thus essential to
try to integrate inequality constraints as early as thetiieation phase of the hyperparameters.

Algorithm 1: Construction of the predictdry ,,

Choose thresholdg® € R andp} €]0, 1], numbersq,, n.y, andM™® and parametric
representations for the mean functiomand covariance functio;
GatherN evaluations of; in y(X);
Compute the maximum likelihood estimate of the hyperpatarse;
LetY ~ GP(u(p), C (1)) be the GPR-based surrogate model associatedyittsed
oni and theN evaluations ofy;
Initialize Z =[], &, M = 0;
Computep, as the average over, points ofX of the empirical estimate of the
constraints’ probability functiop, based om .y iid realizations ofLY
whilep. < pX andM < M™®*do
Minimize criterionc!™ (for k = 1 or 2);
SetM = M + 1, add the optimal point t&, and save the associated constrainkjn
Update the value ap, solving problem (37);
Update the value gi,;
end
ReturnYy ;.
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In a second step, it seems interesting to insist on the fattatbetter consideration of the
constraints does not necessarily result in a better piedjobn average, of the function of in-
terest. This is particularly true in areas where the fumctibinterest approaches the thresholds
of the constraints. Nevertheless, considering an intedratiaptive approach, where virtual ob-
servations and hyperparameters are chosen at the samentinme asequential way, allows for
a very good compromise between predictive capabilitiesrasfdect of constraints with high
probability.

In this paper, we focus on cases whafés small compared td,., as these are often configu-
rations where the consideration of potential constragp&iticularly sought after to compensate
for this small data presence. These are also the confignsatibere the choice of hyperparam-
eters is the most important.

6.1 Presentation of the Test Cases

The interest of Algorithm 1 for the construction of a Gausgieocess predictor under inequality
constraints is illustrated on five test cases, whose claistits are listed in Table 1. None of
the introduced examples will actually be costly to evaluatenake possible the performance
analysis of the proposed algorithms.

On purpose, one or more inequality constraints can be agsdcio each function, which
are also listed in Table 1. To get sound comparisons betweedifferent ways of integrating
constraints, the results presented in the next sectionsvaaged over 10 repetitions of the
whole procedures.

Moreover, for each studied function, a simple linear tremd @ tensorized stationary
Matern-5/2 kernel are chosen:

da
w(x) = Bo + Z Bizs, (38)
i=1
2 = S a2 |z; — 3]
N __ i > 2 _ i Ce— G 7
Clz,z2')=o0 H(1+ VBAzZ; + 3sz)exp ( \/EA:CZ) ,  Axy: o (39)

i=1
As a consequence, the vector of hyperparamegers (B3, o, 0) is constituted of 24, + 1)
constants to be identified, and the veddagathers the correlation lengths.

6.2 Analysis of the Results

The comparison results for the one-dimensional functiomssammarized in Figs. 1, 2, and
3. Four configurations are compared in these three sets aefighlo constraint is taken into

TABLE 1: Characteristics of the five analyzed numerical functiors &ppendix C for the
expressions of the functions)

Example | Name | d, | N Constraint operator Ly d.
1 yib 1| 4 dy/dx 1
2 yiP 1|10 dy/dx 1
3 y | 1|7 (y, dy/da) 2
4 y3P 3 |12 (y, Oy/Ox1, 0%y /0x3, 0%y /0x3) 4
5 y°P 5 | 35| (9%y/0x3,0%y/0x3, 0%y /023, Oy /Ox4,Dy/Oxs) | 5
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FIG. 1: Impact of taking constraints into account on the perforneaotthe GPR surrogate model in
predictingyi® function values. The black continuous lines correspondhéottue value ofyi°, the red
dots are the observation points for the construction of tRRGhe thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% piiediintervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtabkervations where monotonicity constraints are
imposed. (a) No constrain®™'E = 0.152; (b) five imposed constrain®"'-t = 0.152; (c) five imposed
constraintsp”- = 1.98; (d) five constraints sequentially chosef\; = 1.99.

account in the figures labeled (a), but constraints are igghas)M points in the other figures.
However, whereas the positions of these constrainta prori chosen for the figures labeled (b)
and (c), the positions of the constraints in the figures kdbédl) are automatically selected using
Algorithm 1. Then, the MLE ofp (i.e., without constraint) is considered in the figures lat€a)
and (b), whereas in the figures labeled (c) and{dgorresponds to the approximated solution
using an augmented Lagragian method of problem (37) asedaidth the)M former points of
constraint.

The objective of Figs. 1 and 2 is to highlight two typical palthgies that can appear when
constraints are not integrated in the hyperparametertgaigarocess. Focusing on Fig. 1, we
observe that not integrating the constraints can lead tmagtinderestimation of the correlation
length. This has two direct consequences: a strong overatstin of the confidence intervals and
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FIG. 2: Impact of taking constraints into account on the perforneaotthe GPR surrogate model in
predictingyi® function values. The black continuous lines correspondhéottue value ofy3°, the red
dots are the observation points for the construction of tRRGhe thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% piiediintervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtabkervations where monotonicity constraints are
imposed. (a) No constraird™'E = 0.183; (b) three imposed constrain®d"t = 0.183; (c) three imposed
constraintsp”" = 0.035; (d) three constraints sequentially chogiéh, = 0.054.

an oversensitivity of the prediction mean to the additiothefconstraint points. In this example,
we also notice that adding the five monotony constraintdeseatificial oscillations for the pre-
diction mean around = 0.5, which results in a reduction of tig? value, which is the classical
metric of learning performance on test data calculated asminus the predictive residual error
sum of squares (PRESS) divided by the total sum of square3) (RS expected, a much longer
correlation length is obtained when integrating the camsts, which results in an increaséd
value, but also a strong reduction of the confidence interaadund the true function to be pre-
dicted. For this example, we also see that the positionseotdmstraints found by Algorithm 1
allow for an interesting compromise between predictiorecity and respect of monotony.

If we now focus on Fig. 2, we can see that integrating inforamabn the sign of the
derivative can avoid considering too-high correlationglitis this time. Imposing the sign of
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FIG. 3: Impact of taking constraints into account on the perforneaotthe GPR surrogate model in
predictingy3® function values. The black continuous lines correspondhéottue value ofy3°, the red
dots are the observation points for the construction of tRRGhe thick dashed lines are the GPR mean
predictions, and the thin dashed lines correspond to 95%iqgtien intervals provided by the GPR. The
vertical grey solid lines and vertical black dotted lines #re positions of the virtual observations where
boundedness and monotonicity constraints are imposedatggy, while the grey areas characterize the
admissible areas for the output values. (a) No constral& = 0.227; (b) ten imposed constraints,
OMLE — 0.227; (c) ten imposed constrain®," = 1.34; (d) ten constraints sequentially choseff; =
0.380.

the derivative at threa priori pathological points does not greatly improve the model ikeep
OMLE — 0.183. We can even say that it degrades it, since it reduceszb@fbthe confidence
intervals when they already did not contain the true fumctdn the contrary, by integrating this
information on the first derivative in the choice of the ctation length, we obtain a much more
reasonable model, associated with a much lower correl&imgth. For this model, we retrieve
the capacity of Algorithm 1 to correctly position the coastit points in potentially pathological
areas.

The third one-dimensional example deals with bounds andobooly constraints. This ex-
ample, inspired by the functions studied in Agrell (201@rves to illustrate the great interest
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that there can be in taking into account several kinds ofuaéty constraints, when they exist,
in the construction of Gaussian process predictors. L@pkinFig. 3, we note once again that
playing on both the location of the constraint points anddkémation of the hyperaparame-
ters allows us to reduce the confidence intervals aroundtieeftinction and thus to strongly
improve the predictive character of the predictor. To gdhfer, Table 2 quantifies the potential
gains associated with the different approaches propos@nSases are compared, which are
associated with different values of the hyperparameters @V'E or 0 = 02%) and different
selection criteria for the constraint pointg (cy, or cilm). These sequential selection criteria are
also compared to a SF choice of the constraint points, he.constraint points are distributed
as uniformly as possible in the input area [see Fang and LO83P, Damblin et al. (2013),
and Perrin and Cannamela (2017) for further details ab@utdimstruction of such space-filing
designs].

The main information to remember from this table is that foe-@imensional applications
(d, = 1), for which it is possible to position the constraint psintlatively densely in the input
space, all the selection criteria have more or less siméafopmance, both in terms @? and
the probability of respecting the constraipts Nevertheless, it should be noted that for lower
values ofM, a better overall probability of respecting the constimistachieved for the approach
associated with Algorithm 1, the results of which being ptam the last column on the right.

Differences however appear when the dimension of the epagesincreases, which can be
seen in Tables 3 and 4, respectively associated &jithi= 3 andd, = 5. First, these tables
allow us to underline the importance of the choice of hypeaxpeeters for the good respect of
the constraints. For example, for the 3D example, chooBirg6”" with only M/ = 40 points
uniformly chosen inX (fourth configuration, first line) leads toja. value greater than if we
choosed = OM-E with M/ = 120 constraint points (second configuration, third lind)e Bame
observations can be made on the 5D example, where takingo”" with A/ = 35 leads to
better results than taking = 6M-F with A/ = 175. We then notice that for identical hyperpa-
rameters, an adaptive selection of constraint points syaieally leads to a better respect of the
constraints, whatever the chosen criterion. Finally, fiemse examples, criterian seems a little
more interesting than criteriony, but we especially notice that again, the associat@rplus

TABLE 2: For different selection strategies and for the test fumojé%D), this table represents
the values of the)? criterion and the evolution with respect i@ of the average value over
X of the probability of verifying the constrainis.: (1) no constraints applied, = ME; (2)

SF designf = 6M'E; (3) SF designp = OMEC; (4) SF designp = 0~-; (5) sequential
design (Seq. D) withe;, © = OMLE; (6) Seq. D withcp, 6 = O6ME; (7) Seq. D withc,

0 = 0MLE; (8) Seq. D with:], sequential estimation éfwith the augmented Lagrangian-based
approach

M @ 2 ©) (4) ©) (6) U (8)

10 | 0.609 | 0.666 | 0.666 | 0.683 | 0.883 | 0.881 | 0.868 | 0.903
20 | 0.609 | 0.747 | 0.742 | 0.745 | 0.956 | 0.947 | 0.942 | 0.960
30 | 0.609 | 0.799 | 0.795 | 0.803 | 0.973 | 0.976 | 0.970 | 0977
40 | 0.609 | 0.820 | 0.817 | 0.835 | 0.982 | 0985 | 0.982 | 0.985
50 | 0.609 | 0.926 | 0.934 | 0.945 | 0.989 | 0.990 | 0.988 | 0.990
Q> | 0971 | 0982 | 0981 | 0982 | 0982 | 0982 | 0982 | 0.982
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TABLE 3: For different selection strategies and for the test fumaié® , this table
represents the values of tl@@¢? criterion and the evolution with respect fd of
the average value ovéf of the probability of verifying the constraings.: (1) no
constraints appliedd = 6ME; (2) SF designg = 6ME; (3) SF designp =
oMLES: (4) SF designp = 0”-; (5) Seq. D withey, © = 0ME; (6) Seq. D with
2, 8 = OME. (7) Seq. D withd™, sequential estimation d@f with the augmented
Lagrangian-based approach
M € ? ©) 4) ©) (6) ()
40 0.389 | 0.395 | 0.463 | 0.650 | 0.700 | 0.747 | 0.959
80 0.389 | 0.413 | 0.487 | 0.665 | 0.790 | 0.827 | 0.976
120 | 0.389 | 0.574 | 0.671 | 0.787 | 0.842 | 0.869 | 0.986
160 | 0.389 | 0.760 | 0.846 | 0.931 | 0.874 | 0.896 | 0.992
Q? 0.930 | 0.947 | 0.959 | 0975 0.947 | 0.943 | 0.968

TABLE 4: For different selection strategies and for the test fumcié®, this table
represents the values of tl@@? criterion and the evolution with respect fd of
the average value ovéf of the probability of verifying the constraings.: (1) no
constraints appliedd = 6ME: (2) SF designp = 6M'E: (3) SF designp =
oMLES: (4) SF designp = 0%; (5) Seq. D withey; © = 0ME; (6) Seq. D with
2, 8 = OMF; (7) Seq. D withd™, sequential estimation df with the augmented
Lagrangian-based approach
M € 2 ©) (4) ©) (6) ()
35 0.190 0.448 0.520 0.727 0.505 0.570 0.820
70 0.190 0.583 0.670 0.820 0.561 0.649 0.887
105 0.190 0.581 0.670 0.822 0.586 0.700 0.920
140 0.190 0.603 0.695 0.860 0.620 0.734 0.945
175 0.190 0.603 0.697 0.860 0.636 0.752 0.957
Q? 0.961 | 0.961 | 0.974 | 0.990 0.969 | 0.962 | 0.987

sequential estimation &, which is described in Algorithm 1, allows for the fastesheergence
of p.to 1.

7. CONCLUSIONS

This paper focuses on the consideration of linear conssrairthe Gaussian process regression
(GPR) formalism. In particular when few observation poiats available, taking into account
a priori knowledge about the model in the form of linear constraimtshe output of the code
can indeed strongly reduce the prediction uncertaintibdevimproving its explainability.
However, for reasons of numerical stability and computeticost, it is often too difficult
to impose these constraints at any point of the domain, edjyewhen we are interested in the
prediction of functions depending on several parameters.
In order to guarantee, in a reasonable computation timerebgect of these constraints
with the highest possible probability, this work has thuggmrsed two adaptations of previous
works: the first one concerning the selection of the reduceaber of entry points at which the
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constraints are imposed, the second one concerning thmiration of the statistical moments
of the Gaussian process on which the GPR model is based.

From a theoretical point of view, the proposed method cangpdied to the prediction of
functions in any dimensions, incorporating any number ddir constraints. But from a prac-
tical point of view, since the consideration of constraistbased on local additions of con-
straint points, it is certain that the larger the dimensibthe inputs will be, the more constraint
points will have to be added, and the more difficult it will ledbtain a high probability of
respecting the constraints. And to deal with higher dinmei problemsd, > 10, for exam-
ple), other directions will probably have to be exploredjshhcould be the subject of future
work.
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APPENDIX A. PROOF OF PROPOSITION 1

By definition, for allx € X, we have

Y(z) ()
LY (x) oy Lu(z)
Y(X) w(X)
L&Y (Z) La(Z)

C(x,x) C(x,z)LT C(x, X) C(z,Z)LT
LO(z,x) LCO(z,z)LT  LC(x,X) LCO(x,Z2)LE
C(X,z) OX,z)" C(X,X) C(X,Z)ct

| LuC(Z,2) C(X,z)L" LoC(Z,X) LaC(Z,Z)C] |

For eachz € RM | if we focus on vector$Y (z),Y (X), L«Y (Z)), and (LY (z),Y (X),
L&Y (Z)), whose statistical properties can be deduced from Eq. [#IEmoving the second
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and the first row respectively, we notice by Gaussian calitig thaty' (z) := Y (z)|Y (X) =
Y(X), LaY(Z) = zandLY (z) := LY (z)|]Y(X) = y(X), LY (Z) = =z are still Gaussian,
and we have

E [ﬁz)} = u(x) + [C(z, X)C(x, 2)LY)

C(X,X) C(X,2)LT ]_1< y(X) = uX) ) (A.2)

E(XC(ZaX) KOCC(Za Z)££ z _EO(H(Z)

= u(@) + af () (y(X) — w(X)) + a3 (x)(z — Lan(Z)),

Cov(f/(z)) =C(z,x) — [C(z, X)O(x, Z) L)

C(X,X) C(X,2Z)ct
X

‘1< C(X, ) ) A3)
LC(Z,x)

LoC(Z,X) LoC(Z,Z)LT

= C(x,x) — al (£)C(X,z) — al (£)LC(Z,x),

E [c?(z)} = Lu(z) + [CO(x, X)LC(x, Z)LT)
ox,x) ox,z)er 1"

z— Low(Z)

LoaC(Z,X) L&C(Z,Z)LCE

= Lu(x) + A3 (2)(y(X) — (X)) + A (x)(z — Lan(2)),

Cov (c?(z)) = LO(z,2) LT — [LO(z, X)LC(x, Z)LT)

( C(X,z)CT ) (AS5)
LoC(Z,2)LT

C(X,X) cox,z)ct 1t
X

LoC(Z,X) LoC(Z,Z)CE
= LC(z,z)LT — AL (2)C(X, @) LT — AL (2)LoC(Z,z)LT.
We deduce the following:
E[Y§ yu(x)] =E[Y(2)|Y(X) = y(X),62Z) <. LaY(Z) <. u(Z))
=E[E[Y(z)|L.Y(Z),Y(X)

(A.6)
= y(X)(Z) <c LaY(Z) <cu(Z),Y(X) = y(X))]
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E [Y§u(@)?] =E[Y(2)Y(X) = y(X),6Z) <c LaY (Z) <c u(Z)]
=E[E[Y(2)’|LY (2),Y(X) = y(X)] [€(2)
e LaY(Z) <cu(Z),Y(X) = y(X)]

—E [cOv (?(E“Y(Z))M“Y(Z))
+E[V(Lar(2)ILa(2)] 12)

<c LaY(Z) <. u(Z),Y(X) = y(X)]
=C(z,z) — a] (£)C(X,x) — al (x)LC(Z,x)

) [E {?(KO‘Y(Z))M“Y(Z) “lu2)

(A7)
<c LaY(Z) <cu(Z),Y(X) =y(X)]
=C(x,z) — a] ()C(X,x) — al ()L C(Z,x)
+E[(E[Y§ m(@)] +af (2)(LaY (Z) - na(2)))?16(Z)
<c LaY(Z) <cu(Z),Y(X) = y(X)]
=C(x,z) —a] ()C(X,z) — al ()L C(Z,x)
+E [Y§ p(@)?] + a3 (2)E [(LaY(Z) — 1a(2))%6(Z)
<e LoV (Z) <cu(2),Y(X) = y(X)] az(z)
=C(x,z) —a] (z)C(X,x) — al ()L C(Z,x)
+ a3 (2)Ca(Z)az(x) + E [V 3 ()],
so that
Cou(Yy (@) = Clz, x) — af (2)C(X, z)
(A.8)

—al(£)LsC(Z,x) + al ()Cx(Z)ay(x).
The two other expressions are obtained using the same desitinps of the expectation
function.
APPENDIX B. PROOF OF PROPOSITION 2

The result of Proposition 2.2 is a direct consequence of j2) and (A.3), where we have
used the fact that in the normal distribution¥fx)|Y (X) = y(X), L&Y (Z), only the mean
depends o (Z).

Volume 2, Issue 2, 2021



76 Perrin & Da Veiga

APPENDIX C. EXPRESSION OF THE ANALYZED NUMERICAL FUNCTIONS

The three 1D functiong;i®, y3P, andyiP, correspond to

o 0,1 — R c
YUl 2 = 10z —05)3,
o 0,1 — R €2
e r  +— sin(107z%?)/(10rz), .
0. { 0,1 — R 3
x  — 1/3(atar20z — 10) — atar(—10)).

The 3D functiony®® corresponds to the function

3
yso:{ 0,123 — R .4

x = (r3—23)?+ (12— 22)? + (1 — 22)° + (1 — 21)% + 321.

The 5D functiony®® corresponds to the function

0,1° — R
P - (C.5)
x  +— 10sin(rx172) + 40(x3 — 0.5)%(x4 + 0.25) + Szs.
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