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This paper focuses on the Gaussian process regression (GPR) of nonlinear functions subject to mul-

tiple linear constraints such as boundedness, monotonicity or convexity. It presents an algorithm

allowing for the optimization, in a concerted way, of the statistical moments of the Gaussian process

used for the regression and the position of a reduced number of points where the constraints are re-

quired to hold, such that the constraints are verified in the whole input space, with high probability,

at a reasonable computational cost. After having presented the theoretical bases and the numerical

implementation of this algorithm, this paper illustrates its efficiency through the analysis of several

test functions of increasing dimensions.
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1. INTRODUCTION

The conception and the certification of complex systems using simulation are generally based on
the evaluation of computer codes in a very high number of input points. In this work, we focus
on the analysis of one of these system, whose properties can be characterized by a vector ofdx
continuous parameters,x = (x1, . . . , xdx

) ∈ X ⊂ R
dx , and we denote byy the measurable

function defined onX that is used to monitor the good functioning of this system. Functiony is
considered as the output of a computationally expensive deterministic “black box,” in the sense
that for everyx in X, y(x) is unique, and it can be calculated using a time consuming computer
code.

As each evaluation ofy is time consuming, the fine exploration of input spaceX cannot be
done usingy directly, but it is necessary to associate a surrogate modelto it, as it is done in Perrin
(2021). Among these surrogate modeling techniques, the Gaussian process regression (GPR), or
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kriging, plays a central role, which is due in particular to its capacity to associate in a very natural
way a confidence to the predictions it returns (Fang et al., 2006; Kennedy and O’Hagan, 2001;
Sacks et al., 1989; Santner et al., 2003). In a classical way,the construction of a GPR model
relies on the evaluation ofy at a well-chosen set of points inX. Nevertheless, it often happens
that the modeler manipulating the code also wants to includecertaina priori knowledge about
the behavior of the system in the construction of the GPR. Forexample, such constraints can be
associated with underlying physical phenomena when considering engineering applications.

The motivations for taking these constraints into account are numerous: improvement of
prediction capacities, reduction of uncertainties, better explainability of the results, and so on.
Although not suitable for taking into account all types of constraints, the GPR formalism offers
a very attractive framework for taking into account linear constraints ony, i.e., constraints that
can be written in the forma(x) ≤ Ly(x) ≤ b(x), wherea, b are two given functions andL
is a linear operator. This includes boundedness, monotonicity, or convexity constraints, but also
constraints based on integral operators and partial differential equations. Indeed, if functiony is
modeled by a Gaussian process,Ly is also Gaussian, and its statistical moments can be explicitly
derived from the statistical moments ofy.

Several methods for imposing linear constraints on GPs can therefore be found in the lit-
erature [see Swiler et al. (2020) for a survey]. Among them, several works strive to ensure the
respect of constraints at all points ofX (Lopez-Lopera et al., 2018; Maatouk and Bay, 2017).
These approaches are based on a finite dimensional Gaussian approximation associated with a
structured discretization of the input space. These methods show interesting results for exam-
ples in 1D and 2D, while being too time consuming for applications in higher dimensions. In
order to tackle problems of larger dimensions (dx > 2), it was proposed in Riihimki and Vehtari
(2010), Veiga and Marrel (2012), Wang and Berger (2016), Agrell (2019), and Veiga and Marrel
(2020) to restrict the verification of constraints to a finiteset of input points, often called virtual
observations. In that case, the respect of the constraints on X is strongly dependent on the posi-
tion of these virtual observations and their numbers. Criteria were therefore defined to optimize
their positions and numbers and to make the constraints verified inX with high probability at a
reasonable computational cost (i.e., without having to densely fill X with virtual observations).

This paper is a continuation of these works, with two directions of improvement. First, it
proposes two new criteria for the positioning of virtual observations for a more global and
faster respect of the constraints according to the number ofobservation points. It then fo-
cuses on the consideration of the constraints for the identification of the statistical properties
of the Gaussian process used for the regression. Few works have actually addressed this prob-
lem which still remains relatively open. Left as a working perspective for most of the previ-
ously listed works, the choice of the mean function and especially of the covariance func-
tion of this Gaussian process plays a very important role with respect to the constraints. In-
deed, as we will show in the application part of this paper, the choice of too-small corre-
lation lengths may result in the need to introduce a very large number of virtual observa-
tions for the respect of constraints with sufficient high probability. Conversely, choosing cor-
relation lengths that are too large may make it almost impossible (in probability) to verify
constraints on subsets ofX. In other words, the choice of these statistical parametersis in-
timately linked to the respect of the constraints, and thus strongly depends on the positions
of the virtual observations. As the choice of the positions of the virtual observations is it-
self strongly dependent on the choice of these statistical parameters, it is then proposed in
this paper to identify in a concerted way these statistical parameters and these virtual obser-
vations.
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The outline of this work is as follows. Section 2 introduces the general framework for car-
rying out a Gaussian process regression in the presence of inequality constraints. The criteria
we propose for the selection of the virtual observations arethen described in Section 3. Section
4 deals with the identification of the statistical moments ofthe Gaussian process used for the
regression, and Section 5 describes the algorithm we propose for the verification of constraints
with high probability using only a reduced number of virtualobservations. Numerical applica-
tions are then presented in Section 6, while concluding remarks are given in Section 7.

2. GENERAL FRAMEWORK

The formalism of the Gaussian process regression is considered: the quantity of interesty is
seen as a sample path of a stochastic processY defined on a probability space(Ω,A,P), which
is assumed Gaussian for the sake of tractability:Y ∼ GP(µ, C), whereµ is the mean function
andC is the covariance function ofY . Let X (N) :=

{
(x(n), y(x(n))), 1 ≤ n ≤ N

}
be aN -

dimensional design of experiments (DoE). By conditioningY by the responses ofy in X (N),
we obtain another Gaussian process, which is notedYN := Y |Y (X) = y(X) ∼ GP(µN , CN ),
whose mean and covariance functions can be explicitly derived [see Sacks et al. (1989) and
Santner et al. (2003) for further details about the expressions]:

µN (x) = µ(x) + C(x,X)C(X,X)−1(µ(X) − y(X)), x ∈ X, (1)

CN (x,x′) = C(x,x′)− C(x,X)C(X,X)−1C(X,x′), x,x′ ∈ X. (2)

In the former expressions,X := [x(1) · · ·x(N)]T is the(N × dx)-dimensional matrix that
gathers the input points ofX (N), and for each functionf and g defined onX andX × X

respectively, the following notation is adopted:

(f(X))n = f(x(n)), (g(X,X))nm = g(xn,xm), 1 ≤ n, m ≤ N. (3)

As the time needed to evaluatey in each points ofXN is supposed to be very high, the
value ofN is assumed to be relatively small. Gaussian processYN can therefore be used to
predict the value ofy in any nonobserved point ofX. In particular,µN (x) is the best linear
unbiased predictor (BLUP) ofy(x), whileCN (x,x) quantifies the uncertainty associated with
this prediction, in the sense that the smaller it is, the morechance there is fory(x) andµN (x)
to be close.

In addition to the observation points, we assume we have access to prior knowledge on some
properties of functiony, which can be written under the form of a linear operatorL [adopting
the same notations as Agrell (2019)]. For example, the constraints 0≤ y, ℓ2 ≤ ∂y/∂xi ≤ u2,
∂2y/∂xi∂xj ≤ u3 can be written as

(0, ℓ2(x),−∞) ≤c Ly(x) ≤c (+∞, u2(x), u3(x)), x ∈ X, (4)

whereL : y 7→ Ly := (y, ∂y/∂xi, ∂
2y/∂xi∂xj), and≤c stands for the component by compo-

nent inequality operator, such that for twod-dimensional vectorsa andb, a ≤c b is equivalent
to a1 ≤ b1, . . . , ad ≤ bd. In particular, this includes boundedness, monotonicity or convexity
constraints ony.

In the following, we denote bydc the number of constraints, such thatLy is a function from
R

dx to R
dc , andℓ andu are the vector-valued functions that characterize the lower and upper
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bounds forLy (possibly taking infinite values). As the Gaussian distribution is stable by linear
operations,LY is still a Gaussian process, with

E [LY (x)] = Lµ(x), Cov(LY (x),LY (x′)) = LC(x,x′)LT . (5)

Here, the notationsLC(x,x′) andC(x,x′)LT indicate that operatorL is applied as a func-
tion ofx andx′, respectively, so that Cov(LY (x),LY (x′)) is a(dc × dc)-dimensional matrix.

Integrating these constraints onY in the former GP formalism, the new processY c
N :=

Y |Y (X) = y(X), ℓ ≤c LY ≤c u seems particularly attractive for the prediction ofy. Manip-
ulatingY c

N is, however, difficult, if not impossible. Indeed, it is supposed to take into account an
infinite number of constraints, and even ifY , Y (X), andLY are Gaussian, there is no reason
for Y c

N to still be Gaussian once the inequality constraints are applied.
Different approaches were proposed to get back to a problem integrating a finite number of

constraints and therefore circumvent the first difficulty. On the one hand, it was proposed in Maa-
touk and Bay (2017) and Lopez-Lopera et al. (2018) to approximateY by its finite-dimensional
projection on a tensorized grid ofX. In that case, the projection functions are deterministic,the
projection coefficients are modeled by (potentially correlated) Gaussian random variables, and
the constraints on the entire domain are translated as constraints on the projection coefficients
only. However, due to the tensorized structure of the projection functions, the application of this
approach is limited to very small values ofdx (generally less than 2).

On the other hand, it was proposed in Veiga and Marrel (2012) [and completed in Veiga and
Marrel (2020)] to impose constraints only at a finite set of virtual observations. In that case, the
constraints are not fulfilled on the entire domain, but only with a more or less high probability
depending on the number and positions of these virtual observations.

Let Z := [z(1); · · · ; z(M)] be the(M × dx)-dimensional matrix gathering the positions of
M virtual observations inX, andα ∈ {1, . . . , dc}M be theM -dimensional vector gathering
the indices of the constraints that we want to impose in each element ofZ. For instance, for
1 ≤ m ≤ M and 1≤ j ≤ dc, choosingαm = j amounts to imposing

ℓj(z
(m)) ≤ (Ly(z(m)))j ≤ uj(z

(m)).

Under that formalism, we denote by

Y c
N,M := Y |Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z), (6)

the process we would like to consider to predict the value ofy in any nonobserved point ofX,
and by

LY c
N,M := LY |Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z), (7)

the process we need to manipulate to verify that the constraints have been correctly taken into
account not only at the points inZ but at any point inX. Here, for all functionsf andg defined
onX andX×X, ℓα(Z),uα(Z), Lαf(Z), andLαg(Z,Z)LT

α are threeM -dimensional vectors
and an(M ×M)-dimensional matrix, respectively, such that for all 1≤ m,m′ ≤ M :

(Lαf(Z))m = (Lf)αm
(z(m)), (Lαg(Z,Z)LT

α)mm′ = (Lg(z(m), z(m′))LT )αmα
m

′
, (8)

(ℓα(Z))m := ℓαm
(z(m)), (uα(Z))m := uαm

(z(m)). (9)

Given these notations, the constraints’ probability function pc is defined by

pc(x) := P
(
ℓ(x) ≤c LY c

N,M (x) ≤c u(x)
)
, x ∈ X, (10)
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and, for each 1≤ j ≤ dc, the probabilitypjc(x) for LY c
N,M (x) to satisfy thejth constraint is

given by
pjc(x) := P

(
ℓj(x) ≤ (LY c

N,M (x))j ≤ uj(x)
)
. (11)

To analyze the statistical properties ofY c
N,M andLY c

N,M , let us first consider the following
random vector:

L(Z) := LαY (Z)|Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z). (12)

By construction,L(Z) follows the truncated normal distributionT N (µL,CL, ℓ(Z),u(Z)),
with

µL := Lαµ(Z) + LαC(Z,X)C(X,X)−1(y(X) − µ(X)), (13)

CL := LαC(Z,Z)LT
α − LαC(Z,X)C(X,X)−1C(X,Z)LT

α, (14)

in the sense that its probability density function (PDF)fL verifies the following proportionality
relation:

fL(v) ∝ 1ℓ(Z)≤cv≤cu(Z) exp

(
−1

2
(v − µL)

TC−1
L

(v − µL)

)
, v ∈ R

M . (15)

Looking at Propositions 2.1 and 2.2 (see Appendix A and Appendix B for the proofs), we
therefore notice that this vectorL(Z) plays a major role in the analysis of processesY c

N,M

andLY c
N,M , as there are affine transforms between the mean and the variance ofY c

N,M(x) and
LY c

N,M (x) and the mean vector and the covariance matrix ofL(Z), but also between the realiza-
tions ofL(Z) and the realizations ofY c

N,M(x) andLY c
N,M (x). The fact that we can efficiently

generate independent realizations of non-Gaussian processesY c
N,M andLY c

N,M indeed plays a
central role in the following developments. On the one hand,this will allow the construction of
empirical prediction intervals for the value ofy at any point ofX. On the other hand, it will
allow the identification of subdomains ofX where the constraints are most likely to be violated
but also the estimation of average values overX of verifying the constraints.

Proposition 2.1. For all x,x′ ∈ X, if µα(Z) andCα(Z) correspond to the mean vector and
the covariance matrix ofL(Z), we obtain

E
[
Y c
N,M(x)

]
= µ(x) + aT

1 (x)(y(X) − µ(X)) + aT
2 (x)(µα(Z) −Lαµ(Z)), (16)

Var
(
Y c
N,M (x)

)
= C(x,x)− aT

1 (x)C(X,x)

− aT
2 (x)LαC(Z,x) + aT

2 (x)Cα(Z)a2(x),
(17)

E
[
LY c

N,M (x)
]
= Lµ(x) +AT

3 (x)(y(X) − µ(X)) +AT
4 (x)(µα(Z) −Lαµ(Z)), (18)

Cov
(
LY c

N,M (x),LY c
N,M (x′)

)
= LC(x,x′)LT −AT

3 (x)C(X,x′)LT

−AT
4 (x)LαC(Z,x′)LT +AT

4 (x)Cα(Z)A4(x
′),

(19)

with a1(x) ∈ R
N anda2(x) ∈ R

M being the two vectors andA3(x) andA4(x) being the two
matrices that verify

(
a1(x)
a2(x)

)
=

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)

LαC(Z,x)

)
, (20)

(
A3(x)
A4(x)

)
=

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)L

LαC(Z,x)L

)
. (21)
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Proposition 2.2. Let l(1), . . . , l(Q) beQ-independent realizations ofL(Z), ξ(1), . . . , ξ(Q) be
Q-independent realizations of a centered Gaussian random value of variance equal to 1, and
ζ
(1), . . . , ζ(Q) be Q-independent realizations of adc-dimensional centered Gaussian random

vector whose covariance matrix is the identity matrix. Then, for eachx ∈ X and each 1≤ q ≤
Q,

µ(x) + aT
1 (x)(y(X) − µ(X)) + aT

2 (x)(l
(q) −Lαµ(Z))

+
√
C(x,x)− aT

1 (x)C(X,x) − aT
2 (x)LαC(Z,x)ξ(q),

(22)

is an independent realization ofY c
N,M (x), and

Lµ(x) +A3(x)
T (y(X) − µ(X)) +A4(x)

T (l(q) −Lαµ(Z))

+
(
LC(x,x)LT −A3(x)

TC(X,x)LT −AT
4 LαC(Z,x)LT

)1/2
ζ
(q),

(23)

is an independent realization ofLY c
N,M (x), where for any symmetric square matrixR, R1/2 is

a matrix such thatR1/2(R1/2)T = R.

Generating realizations ofL(Z) [and therefore ofY c
N,M(x) andLY c

N,M (x)] is, however,
challenging. Of course, using rejection techniques, that is, generating samples from the uncon-
strained normal distributionN (µL,CL) and keeping the ones that verify the constraints, would
be the most natural method to obtain such realizations. But the more constraint points consid-
ered, and therefore the moreM increases, the lower the acceptance rate is likely to be, andthe
more inefficient the method will be. In that case, alternative methods have to be employed, such
as the method based on the minimax tilting proposed by Botev (2017), which proves to be partic-
ularly efficient for the generation of realizations of truncated Gaussian vectors with dimensions
smaller than 200, with acceptance probabilities up to 10−100. For higher dimensions, methods
based on Gibbs sampling Kotecha and Djuric (1999) could alsobe used, but the convergence of
such methods is likely to require a very significant numerical cost.

Remark2.1. Looking at Proposition 2.2, it is important to notice that the sameQ-independent
realizations ofL(Z) can be used to getQ-independent realizations ofY c

N,M (x) andLY c
N,M (x)

in any value ofx, and therefore to predict the value ofy(x) and estimatepc(x) or pjc(x) in
eachx.

Remark2.2. If x(1), . . . ,x(P ) areP ≥ 1 elements ofX, Proposition 2.2 is easily generalized to
the generation of realizations of the vector(Y c

N,M (x(1)), . . . , Y c
N,M (x(P ))).

3. SELECTION OF THE VIRTUAL OBSERVATIONS

PredictorE
[
Y c
N,M (x)

]
of y(x) depends on two sets of points: theN observation points ofy

gathered inX, and theM virtual observations associated with the constraints gathered inZ.
While the observation points are generally imposed, it is possible to choose the number and
the position of the virtual observations as they do not require any code evaluations. Different
strategies can be proposed to choose these points. Naively,in order to allow a verification of the
constraints over the whole input domain, these observationpoints can be chosen as uniformly
as possible inX. For this, one can then rely on several experiment design works (Auffray et al.,
2012; Damblin et al., 2013; Fang, 2001; Joseph et al., 2015; Perrin and Cannamela, 2017). This
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approach, which will be refered to as space-filing (SF) approach, is, however, clearly suboptimal.
Indeed, these points are supposed to allow a maximization ofthe constraints’ probability function
pc defined by Eq. (10). Thus, adding points wherepc is large is of little interest. However,
searching directly for all of these points to maximize the minimal value ofpc overX is generally
far too difficult, and greedy approaches are often preferred. For instance, following Agrell (2019)
and Veiga and Marrel (2020), given a set ofM virtual observations already chosen, theM + 1
virtual observationx⋆ associated with thej⋆th constraint can be chosen as the point with the
best chance of not respecting the constraints, which is the solution of the following optimization
problem:

(x⋆, j⋆) ∈ arg max
x∈X,1≤j≤dc

c1(x, j), c1(x, j) := 1− pjc(x). (24)

However, it can be noticed that such a pointwise strategy does not take into account in its
selection criteria the fact that the new evaluation point will bring additional information in its
neighborhood, nor integrate the fact that a constraint is strongly or slightly not respected. This
can result in an unintended accumulation of virtual points in the same area. For example, if we
are interested in a function that is increasing with respectto one of its parameters, and that this
function is almost constant over a certain interval, whatever the number of virtual observations
that we place in this zone, the probability of not respectingthe monotonicity constraint will
always be close to 50% at any point in this zone. In order to propose a better treatment of the
constraints on the whole input domain, we can then propose tofocus on the following enrichment
criterion:

(x⋆, j⋆) ∈ arg max
x∈X,1≤j≤dc

c2(x, j), (25)

c2(x, j) := E

[(
ℓj(x)− (LY c

N,M (x))j
)+

+
(
(LY c

N,M (x))j − uj(x)
)+]

, (26)

which can be seen as an adaptation of the well-known expectedimprovement (EI) selection crite-
rion (Zhan and Xing, 2020) for the selection of virtual observations. In Eq. (26), for eachz in R,
(z)+ := max(0, z), and we have used the convention−∞×Φ(−∞) = −∞(1−Φ(+∞)) = 0
to simplify notations. Thus, for two pointsx andx′ such thatpjc(x) andpjc(x

′) are close, the
criterion defined by Eq. (26) allows us to favor the point associated with the strongest nonre-
spect of the constraints. Of course, weights that depend onj could be added to the expressions
provided in Eqs. (24) and (26) in the event that one constraint is to be favored over another.

Finally, to better take into account the impact of the addition of a new virtual observation
on its neighborhood, the criteriac1 andc2 defined by Eqs. (24) and (26) can be replaced by the
integrated criteriacint

1 andcint
2 as follows:

cint
1 (x, j) :=

dc∑

j′=1

∫

X

cx,j1 (x′, j′)dx′, cint
2 (x, j) :=

dc∑

j′=1

∫

X

cx,j2 (x′, j′)dx′,

where the criteriacx,j1 andcx,j2 respectively correspond to the criteriac1 andc2, assuming that
the jth constraint has been imposed at virtual observationx. Hence, criteriacint

1 or cint
2 can be

seen as average probabilities of nonrespect of the constraints, knowing that a new observation
has been added inx. This explains that these two criteria need now to be minimized, while we
want to maximize the criteriac1 andc2 proposed in Eqs. (24) and (26).
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3.1 Remarks on the Practical Solving of the Optimization Problems

The maximization of criteriac1 andc2 and the minimization of criteriacint
1 andcint

2 have been
introduced in their continuous form. In the following, the solving of these problems will however
be based on discrete approximations of these optimization problems. Focusing first on criteria
c1 or c2, the new virtual observationx⋆ and the new constraintj⋆ will be searched as

(x⋆, j⋆) ∈ arg max
x∈S(n),1≤j≤dc

ck(x, j), (27)

wherek is equal to 1 or 2,S(n) gathersn ≫ 1 points chosen (randomly or not) inX, and where
we remind that the sampling procedure of Botev (2017) allowsus to evaluatec1 or c2 in a very
high number of points ofX at a reasonable computational cost. Indeed, ifl(1), . . . , l(Q) denote
Q-independent realizations ofL(Z) such that

(LY (x))j |L(Z) = l(q), Y (X) = y(X) ∼ N
(
m

(q)
j (x), (σ

(q)
j (x))2

)
, (28)

we deduce the following empirical estimations forc1(x, j) andc2(x, j):

1− c1(x, j) = P
(
ℓj(x) ≤c (LY c

N,M (x))j ≤c uj(x)
)

= E
[
P
(
ℓj(x) ≤c (LY c

N,M (x))j ≤c uj(x)|L(Z)
)]

≈ 1
Q

Q∑

q=1

P

(
ℓj(x) ≤c (LY (x))j ≤c uj(x)|L(Z) = l(q), Y (X) = y(X)

)

≈ 1
Q

Q∑

q=1

1− Φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+Φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
,

(29)

c2(x, j) = E

[(
ℓj(x)− (LY c

N,M (x))j
)+

+
(
(LY c

N,M (x))j − uj(x)
)+]

= E

[
E

[(
ℓj(x)− (LY c

N,M (x))j
)+

+
(
(LY c

N,M (x))j − uj(x)
)+ |L(Z)

]]

≈ 1
Q

Q∑

q=1

σ
(q)
j (x)

(
φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+ φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

))

+ (ℓj(x)−m
(q)
j (x))Φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+ (m

(q)
j (x) − uj(x))

×
(

1− Φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

))
,

(30)

whereφ andΦ are respectively the probability density function (PDF) and the cumulative den-
sity function (CDF) of a centered Gaussian random variable of variance 1.

As for the minimization of criteriacint
1 andcint

2 , the couple(x⋆, j⋆) will be chosen as the
solution of

(x⋆, j⋆) ∈ arg min
x∈S(n),1≤j≤dc

∑

1≤j′≤dc,x′∈S(n),(x′,j′)6=(x,j)

cx,jk (x′, j′), k = 1 or 2. (31)
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The evaluation of criterioncx,jk (x′, j′) requires a little more attention than that of crite-
rion ck(x, j), as it supposes that an(M + 1)th constraint is imposed inx. However, denoting
by x̃(1), . . . , x̃(n) the elements ofS(n), it is interesting to notice that, once again, the distri-
bution of the random vector(LY c

N,M (x̃(1)), . . . ,LY c
N,M (x̃(n)))|L(Z) is Gaussian, such that

onceQ-independent realizations ofL(Z) have been generated, the evaluation ofcx,jk (x′, j′) for
eachx 6= x′ will only be based on the generation of one realization ofQ-independent one-
dimensional truncated normal Gaussian random variables, which is relatively easy and quick
to do.

4. ESTIMATION OF HYPERPARAMETERS

A key ingredient in the prediction ofy in each nonobserved value ofx is the choice of the
mean functionµ and, probably even more importantly, of the covariance functionC of Gaussian
processY . For the sake of tractability, parametric representationscan be chosen for these two
functions. For instance,µ can be written as a weighted sum of chosen functions ofx,

µ(x) :=
K∑

k=1

βkhk(x) = β
Th(x), (32)

with β := (β1, . . . ,βK) andh(x) := (h1(x), . . . , hK(x)) being vectors ofK functions such
thatLhk exists. In the same manner,C can be chosen among a standard parametric class of
covariance functions, such as the square exponential or theMatern families [see Santner et al.
(2003) and Sacks et al. (1989) for more details about these families]. Let R be a correlation
function defined onX × X such thatLR(x,x′)LT exists, and letσ andθ be associated hyper-
parameters such that for allx,x′,

C(x,x′) = σ2R(x,x′;θ). (33)

Under that formalism, the prediction ofy requires a prior assessment ofβ, σ, andθ. One
approach to determineψ := (β,σ,θ) is to maximize the constrained log-likelihood function
LN,M (Bachoc et al., 2019),

ψ
MLEc := argmax

ψ
LN,M(ψ), (34)

whereLN,M(ψ) corresponds to the evaluation iny(X) of the log value of the conditional PDF
of Y (X), givenℓα(Z) ≤c LαY (Z) ≤c uα(Z). Using the Bayes’ theorem, this function can
be written under the form

LN,M(ψ) = LN (ψ)− log(P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z))

+ log(P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z)|Y (X) = y(X))),
(35)

whereLN (ψ) is the unconstrained log likelihood. Thus, in addition to the estimation ofLN (ψ),
the computation ofLN,M(ψ) for each value ofψ requires the calculation of the difference
between the prior and posterior, that is integrating the conditioningY (X) = y(X), probabilities
of respecting the constraints. However, as it will be shown in the application section, the gain
brought by this hyperparameter identification procedure, both in terms of constraints respect
and prediction capacity, is often low compared to its numerical cost. This explains that many
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papers [see, for instance, Agrell (2019) and Veiga and Marrel (2020)] propose focusing on the
unconstrained log likelihood only. LetψMLE be this value ofψ that maximizesLN . In this case,
the respect of the constraints relies only on the choice of theM virtual observations.

Nevertheless, as we will also see in the application part, a very large number of virtual ob-
servation points may be necessary to compensate for correlation lengths chosen too small. And
conversely, if the correlation lengths are too large, the probability of respecting the constraints
can be extremely low, which is likely to make the draw of the realizations ofLαY (Z) very
unstable numerically. To better integrate the constraintsin the identification ofψ, another ap-
proach inspired by the work achieved in Pensoneault et al. (2020) is now proposed. It consists in
rewriting the identification problem ofψ in the form of a maximization problem under constraint

max
ψ

LN (ψ) s.t.P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z)|Y (X) = y(X)) ≥ 1− γ, (36)

with 0 ≤ γ ≤ 1 as a chosen tolerance. This problem can then be approached by

max
ψ

LN (ψ) s.t. for all 1≤ m ≤ M :

µLYα(Z)
m + q∗

√
(CLYα(Z))mm ≤ (uα(Z))m,

µLYα(Z)
m − q∗

√
(CLYα(Z))mm ≥ (ℓα(Z))m,

(37)

with q∗ being as a chosen constant andµLYα(Z) andCLYα(Z) being the mean vector and covari-
ance matrix of Gaussian random vectorLYα(Z)|Y (X) = y(X). Contrary to the problem given
by Eq. (36), the problem introduced in Eq. (37) no longer requires the costly computation of a
probability associated with a truncated Gaussian distribution. Indeed, for a given value ofψ, the
expressions ofLN (ψ), µLYα(Z), andCLYα(Z) can be explicitly derived for a total calculation
cost close to the evaluation ofLN (ψ) only.

In the following, the approximated solution of problem (37)using an augmented Lagrangian
method is denoted byψAL [see Golshtein (1981) for more details about the interest ofthis
method for solving constrained optimization problems].

In problem (37), a particular attention has to be paid to the role of q∗. The greaterq∗ is, the
greater the weight of the constraints will be in comparison to the likelihood. Choosing a large
value forq∗ (for instance, choosingq∗ = 2), and thus forcing a strict respect of the constraints,
can indeed degrade the predictive capabilities of the modelby strongly underestimating or over-
estimating the prediction uncertainties. In our opinion, it is necessary to keep in mind that the
respect of the constraints relies on two points: the values of the hyperparameters and the virtual
observations. Thus, it seems to us more judicious to take a value ofq∗ close to 0. This ensures a
reasonable probability of respect of the constraints before applying the constraints in the virtual
points and is likely to lead to a high probability of respect of the constraints once the virtual
observation points will be added. In the following,q∗ will be chosen equal to 0.1.

5. JOINT IDENTIFICATION OF THE HYPERPARAMETERS AND OF THE VIRTUAL
OBSERVATIONS

Until now, the choice of theM virtual observations gathered inZ and the estimation of the
hyperparametersψ characterizing the mean and covariance function ofY are carried out inde-
pendently. In Section 3, we explained how we can chooseZ for a fixed value ofψ to impose
constraints onY . And in Section 4, we proposed several methods to choose the value ofψ for a
fixed set of virtual observations gathered inZ.
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In order to maximize the predictive capabilities of the finalpredictor, and to maximize the
probability of respecting the constraints, we now propose to adopt a mixed approach based on
an alternation between enrichment ofZ and hyperparameter re-estimation. This approach is
summarized in Algorithm 1.

Several advantages can be listed for such an approach. First, by progressively increasing the
number of constraints, the numerical cost of estimating thehyperparameters under constraints is
limited. Secondly, by continuously adapting the hyperparameters to the constraints at the virtual
observations, we limit the risk of being confronted with a too-low probability of verifying the
constraints at these points, which allows for an accelerated execution of the generation proce-
dures presented in Botev (2017).

Remark5.1. In Algorithm 1, the stopping criterion is a threshold on the average probability of
respecting all the constraints on the input domain. Nevertheless, for high dimensional applica-
tions with several constraints, the number of constraint points required can be very large, and
the associated generation of realizations of truncated Gaussian vectors can be numerically very
or even too difficult, which explains the addition of the second stopping criterion in the num-
ber of maximum constraint pointsMmax. Although it is reasonable to expect that the number of
constraint points needed to ensurep̂c < p⋆c grows withdx anddc, the choice ofMmax is rather
constrained by our ability to correctly estimate the probability of verifying the constraints at the
constraint points. Following the recommendations provided in Botev (2017) on the stability of
its algorithm,Mmax can thus be chosena priori equal to 200, whatever the value ofdx anddc.

6. APPLICATION

We list at least three objectives for the application section. First, we would like to show the cru-
cial role of hyperparameters on taking into account inequality constraints. It is thus essential to
try to integrate inequality constraints as early as the identification phase of the hyperparameters.

Algorithm 1: Construction of the predictorY c
N,M

Choose thresholdsq∗ ∈ R andp⋆c ∈]0, 1[, numbersnp, nLY , andMmax, and parametric
representations for the mean functionµ and covariance functionC;

GatherN evaluations ofy in y(X);
Compute the maximum likelihood estimate of the hyperparametersψ;
Let Y ∼ GP(µ(ψ), C(ψ)) be the GPR-based surrogate model associated withy based
onψ and theN evaluations ofy;

InitializeZ = [], α, M = 0;
Computêpc as the average overnp points ofX of the empirical estimate of the
constraints’ probability functionpc based onnLY iid realizations ofLY c

N,M ;
while p̂c < p⋆c andM < Mmax do

Minimize criterioncint
k (for k = 1 or 2);

SetM = M +1, add the optimal point toZ, and save the associated constraint inα;
Update the value ofψ, solving problem (37);
Update the value of̂pc;

end
ReturnY c

N,M .
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In a second step, it seems interesting to insist on the fact that a better consideration of the
constraints does not necessarily result in a better prediction, on average, of the function of in-
terest. This is particularly true in areas where the function of interest approaches the thresholds
of the constraints. Nevertheless, considering an integrated adaptive approach, where virtual ob-
servations and hyperparameters are chosen at the same time and in a sequential way, allows for
a very good compromise between predictive capabilities andrespect of constraints with high
probability.

In this paper, we focus on cases whereN is small compared todx, as these are often configu-
rations where the consideration of potential constraints is particularly sought after to compensate
for this small data presence. These are also the configurations where the choice of hyperparam-
eters is the most important.

6.1 Presentation of the Test Cases

The interest of Algorithm 1 for the construction of a Gaussian process predictor under inequality
constraints is illustrated on five test cases, whose characteristics are listed in Table 1. None of
the introduced examples will actually be costly to evaluateto make possible the performance
analysis of the proposed algorithms.

On purpose, one or more inequality constraints can be associated to each function, which
are also listed in Table 1. To get sound comparisons between the different ways of integrating
constraints, the results presented in the next sections areaveraged over 10 repetitions of the
whole procedures.

Moreover, for each studied function, a simple linear trend and a tensorized stationary
Matern-5/2 kernel are chosen:

µ(x) = β0 +

dx∑

i=1

βixi, (38)

C(x,x′) = σ2
dx∏

i=1

(1+
√

5∆xi +
5
3
∆x2

i) exp
(
−
√

5∆xi

)
, ∆xi :=

|xi − x′
i|

θi
. (39)

As a consequence, the vector of hyperparametersψ = (β,σ,θ) is constituted of 2(dx + 1)
constants to be identified, and the vectorθ gathers the correlation lengths.

6.2 Analysis of the Results

The comparison results for the one-dimensional functions are summarized in Figs. 1, 2, and
3. Four configurations are compared in these three sets of figures. No constraint is taken into

TABLE 1: Characteristics of the five analyzed numerical functions (see Appendix C for the
expressions of the functions)

Example Name dx N Constraint operator Ly dc

1 y1D
1 1 4 dy/dx 1

2 y1D
2 1 10 dy/dx 1

3 y1D
3 1 7 (y, dy/dx) 2

4 y3D 3 12 (y, ∂y/∂x1, ∂
2y/∂x2

2, ∂
2y/∂x2

3) 4
5 y5D 5 35 (∂2y/∂x2

1, ∂
2y/∂x2

2, ∂
2y/∂x2

3, ∂y/∂x4, ∂y/∂x5) 5
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FIG. 1: Impact of taking constraints into account on the performance of the GPR surrogate model in
predictingy1D

1 function values. The black continuous lines correspond to the true value ofy1D
1 , the red

dots are the observation points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% prediction intervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtualobservations where monotonicity constraints are
imposed. (a) No constraint,θMLE

= 0.152; (b) five imposed constraints,θMLE
= 0.152; (c) five imposed

constraints,θAL
= 1.98; (d) five constraints sequentially chosen,θAL

= 1.99.

account in the figures labeled (a), but constraints are imposed inM points in the other figures.
However, whereas the positions of these constraints area priori chosen for the figures labeled (b)
and (c), the positions of the constraints in the figures labeled (d) are automatically selected using
Algorithm 1. Then, the MLE ofψ (i.e., without constraint) is considered in the figures labeled (a)
and (b), whereas in the figures labeled (c) and (d),ψ corresponds to the approximated solution
using an augmented Lagragian method of problem (37) associated with theM former points of
constraint.

The objective of Figs. 1 and 2 is to highlight two typical pathologies that can appear when
constraints are not integrated in the hyperparameter selection process. Focusing on Fig. 1, we
observe that not integrating the constraints can lead to a strong underestimation of the correlation
length. This has two direct consequences: a strong overestimation of the confidence intervals and
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FIG. 2: Impact of taking constraints into account on the performance of the GPR surrogate model in
predictingy1D

2 function values. The black continuous lines correspond to the true value ofy1D
2 , the red

dots are the observation points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% prediction intervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtualobservations where monotonicity constraints are
imposed. (a) No constraint,θMLE

= 0.183; (b) three imposed constraints,θMLE
= 0.183; (c) three imposed

constraints,θAL
= 0.035; (d) three constraints sequentially chosen,θAL

= 0.054.

an oversensitivity of the prediction mean to the addition ofthe constraint points. In this example,
we also notice that adding the five monotony constraints creates artificial oscillations for the pre-
diction mean aroundx = 0.5, which results in a reduction of theQ2 value, which is the classical
metric of learning performance on test data calculated as one minus the predictive residual error
sum of squares (PRESS) divided by the total sum of squares (TSS). As expected, a much longer
correlation length is obtained when integrating the constraints, which results in an increasedQ2

value, but also a strong reduction of the confidence intervals around the true function to be pre-
dicted. For this example, we also see that the positions of the constraints found by Algorithm 1
allow for an interesting compromise between prediction capacity and respect of monotony.

If we now focus on Fig. 2, we can see that integrating information on the sign of the
derivative can avoid considering too-high correlation lengths this time. Imposing the sign of
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FIG. 3: Impact of taking constraints into account on the performance of the GPR surrogate model in
predictingy1D

3 function values. The black continuous lines correspond to the true value ofy1D
3 , the red

dots are the observation points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions, and the thin dashed lines correspond to 95% prediction intervals provided by the GPR. The
vertical grey solid lines and vertical black dotted lines are the positions of the virtual observations where
boundedness and monotonicity constraints are imposed respectively, while the grey areas characterize the
admissible areas for the output values. (a) No constraint,θMLE

= 0.227; (b) ten imposed constraints,
θMLE

= 0.227; (c) ten imposed constraints,θAL
= 1.34; (d) ten constraints sequentially chosen,θAL

=

0.380.

the derivative at threea priori pathological points does not greatly improve the model if wekeep
θMLE = 0.183. We can even say that it degrades it, since it reduces the size of the confidence
intervals when they already did not contain the true function. On the contrary, by integrating this
information on the first derivative in the choice of the correlation length, we obtain a much more
reasonable model, associated with a much lower correlationlength. For this model, we retrieve
the capacity of Algorithm 1 to correctly position the constraint points in potentially pathological
areas.

The third one-dimensional example deals with bounds and monotony constraints. This ex-
ample, inspired by the functions studied in Agrell (2019), serves to illustrate the great interest
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that there can be in taking into account several kinds of inequality constraints, when they exist,
in the construction of Gaussian process predictors. Looking at Fig. 3, we note once again that
playing on both the location of the constraint points and theestimation of the hyperaparame-
ters allows us to reduce the confidence intervals around the true function and thus to strongly
improve the predictive character of the predictor. To go further, Table 2 quantifies the potential
gains associated with the different approaches proposed. Seven cases are compared, which are
associated with different values of the hyperparameters (θ = θMLE or θ = θAL ) and different
selection criteria for the constraint points (c1, c2, or cint

1 ). These sequential selection criteria are
also compared to a SF choice of the constraint points, i.e., the constraint points are distributed
as uniformly as possible in the input area [see Fang and Lin (2003), Damblin et al. (2013),
and Perrin and Cannamela (2017) for further details about the construction of such space-filing
designs].

The main information to remember from this table is that for one-dimensional applications
(dx = 1), for which it is possible to position the constraint points relatively densely in the input
space, all the selection criteria have more or less similar performance, both in terms ofQ2 and
the probability of respecting the constraintspc. Nevertheless, it should be noted that for lower
values ofM , a better overall probability of respecting the constraints is achieved for the approach
associated with Algorithm 1, the results of which being placed in the last column on the right.

Differences however appear when the dimension of the entry space increases, which can be
seen in Tables 3 and 4, respectively associated withdx = 3 anddx = 5. First, these tables
allow us to underline the importance of the choice of hyperparameters for the good respect of
the constraints. For example, for the 3D example, choosingθ = θAL with only M = 40 points
uniformly chosen inX (fourth configuration, first line) leads to apc value greater than if we
chooseθ = θMLE with M = 120 constraint points (second configuration, third line). The same
observations can be made on the 5D example, where takingθ = θ

AL with M = 35 leads to
better results than takingθ = θMLE with M = 175. We then notice that for identical hyperpa-
rameters, an adaptive selection of constraint points systematically leads to a better respect of the
constraints, whatever the chosen criterion. Finally, for these examples, criterionc2 seems a little
more interesting than criterionc1, but we especially notice that again, the associationcint

1 plus

TABLE 2: For different selection strategies and for the test function y
(1D)
3 , this table represents

the values of theQ2 criterion and the evolution with respect toM of the average value over
X of the probability of verifying the constraintspc: (1) no constraints applied,θ = θMLE ; (2)
SF design,θ = θMLE; (3) SF design,θ = θMLEc; (4) SF design,θ = θAL ; (5) sequential
design (Seq. D) withc1, θ = θMLE ; (6) Seq. D withc2, θ = θMLE ; (7) Seq. D withcint

1 ,
θ = θMLE; (8) Seq. D withcint

1 , sequential estimation ofθwith the augmented Lagrangian-based
approach

M (1) (2) (3) (4) (5) (6) (7) (8)
10 0.609 0.666 0.666 0.683 0.883 0.881 0.868 0.903
20 0.609 0.747 0.742 0.745 0.956 0.947 0.942 0.960
30 0.609 0.799 0.795 0.803 0.973 0.976 0.970 0.977
40 0.609 0.820 0.817 0.835 0.982 0.985 0.982 0.985
50 0.609 0.926 0.934 0.945 0.989 0.990 0.988 0.990
Q2 0.971 0.982 0.981 0.982 0.982 0.982 0.982 0.982
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TABLE 3: For different selection strategies and for the test function y(3D), this table
represents the values of theQ2 criterion and the evolution with respect toM of
the average value overX of the probability of verifying the constraintspc: (1) no
constraints applied,θ = θ

MLE ; (2) SF design,θ = θ
MLE; (3) SF design,θ =

θ
MLEc; (4) SF design,θ = θ

AL ; (5) Seq. D withc1, θ = θ
MLE ; (6) Seq. D with

c2, θ = θMLE. (7) Seq. D withcint
1 , sequential estimation ofθ with the augmented

Lagrangian-based approach

M (1) (2) (3) (4) (5) (6) (7)
40 0.389 0.395 0.463 0.650 0.700 0.747 0.959
80 0.389 0.413 0.487 0.665 0.790 0.827 0.976
120 0.389 0.574 0.671 0.787 0.842 0.869 0.986
160 0.389 0.760 0.846 0.931 0.874 0.896 0.992
Q2 0.930 0.947 0.959 0.975 0.947 0.943 0.968

TABLE 4: For different selection strategies and for the test function y(5D), this table
represents the values of theQ2 criterion and the evolution with respect toM of
the average value overX of the probability of verifying the constraintspc: (1) no
constraints applied,θ = θ

MLE; (2) SF design,θ = θ
MLE; (3) SF design;θ =

θ
MLEc; (4) SF design,θ = θ

AL ; (5) Seq. D withc1; θ = θ
MLE; (6) Seq. D with

c2, θ = θMLE ; (7) Seq. D withcint
1 , sequential estimation ofθ with the augmented

Lagrangian-based approach

M (1) (2) (3) (4) (5) (6) (7)
35 0.190 0.448 0.520 0.727 0.505 0.570 0.820
70 0.190 0.583 0.670 0.820 0.561 0.649 0.887
105 0.190 0.581 0.670 0.822 0.586 0.700 0.920
140 0.190 0.603 0.695 0.860 0.620 0.734 0.945
175 0.190 0.603 0.697 0.860 0.636 0.752 0.957
Q2 0.961 0.961 0.974 0.990 0.969 0.962 0.987

sequential estimation ofθ, which is described in Algorithm 1, allows for the fastest convergence
of pc to 1.

7. CONCLUSIONS

This paper focuses on the consideration of linear constraints in the Gaussian process regression
(GPR) formalism. In particular when few observation pointsare available, taking into account
a priori knowledge about the model in the form of linear constraints on the output of the code
can indeed strongly reduce the prediction uncertainties, while improving its explainability.

However, for reasons of numerical stability and computational cost, it is often too difficult
to impose these constraints at any point of the domain, especially when we are interested in the
prediction of functions depending on several parameters.

In order to guarantee, in a reasonable computation time, therespect of these constraints
with the highest possible probability, this work has thus proposed two adaptations of previous
works: the first one concerning the selection of the reduced number of entry points at which the
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constraints are imposed, the second one concerning the optimization of the statistical moments
of the Gaussian process on which the GPR model is based.

From a theoretical point of view, the proposed method can be applied to the prediction of
functions in any dimensions, incorporating any number of linear constraints. But from a prac-
tical point of view, since the consideration of constraintsis based on local additions of con-
straint points, it is certain that the larger the dimension of the inputs will be, the more constraint
points will have to be added, and the more difficult it will be to obtain a high probability of
respecting the constraints. And to deal with higher dimensional problems (dx > 10, for exam-
ple), other directions will probably have to be explored, which could be the subject of future
work.
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APPENDIX A. PROOF OF PROPOSITION 1

By definition, for allx ∈ X, we have




Y (x)

LY (x)

Y (X)

LαY (Z)




∼ N







µ(x)

Lµ(x)

µ(X)

Lαµ(Z)




,




C(x,x) C(x,x)LT C(x,X) C(x,Z)LT
α

LC(x,x) LC(x,x)LT LC(x,X) LC(x,Z)LT
α

C(X,x) C(X,x)LT C(X,X) C(X,Z)LT
α

LαC(Z,x) C(X,x)LT LαC(Z,X) LαC(Z,Z)LT
α







.

(A.1)

For eachz ∈ R
M , if we focus on vectors(Y (x), Y (X),LαY (Z)), and(LY (x), Y (X),

LαY (Z)), whose statistical properties can be deduced from Eq. (A.1)by removing the second

Volume 2, Issue 2, 2021



74 Perrin & Da Veiga

and the first row respectively, we notice by Gaussian conditioning thatỸ (z) := Y (x)|Y (X) =

y(X),LαY (Z) = z andLỸ (z) := LY (x)|Y (X) = y(X),LαY (Z) = z are still Gaussian,
and we have

E

[
Ỹ (z)

]
= µ(x) + [C(x,X)C(x,Z)LT

α]

×
[

C(X,X) C(X,Z)LT
α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
y(X) − µ(X)

z −Lαµ(Z)

)

= µ(x) + aT
1 (x)(y(X) − µ(X)) + aT

2 (x)(z −Lαµ(Z)),

(A.2)

Cov
(
Ỹ (z)

)
= C(x,x)− [C(x,X)C(x,Z)LT

α]

×
[

C(X,X) C(X,Z)LT
α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)

LαC(Z,x)

)

= C(x,x)− aT
1 (x)C(X,x) − aT

2 (x)LαC(Z,x),

(A.3)

E

[
LỸ (z)

]
= Lµ(x) + [LC(x,X)LC(x,Z)LT

α]

×
[

C(X,X) C(X,Z)LT
α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
y(X) − µ(X)

z −Lαµ(Z)

)

= Lµ(x) +AT
3 (x)(y(X) − µ(X)) +AT

4 (x)(z −Lαµ(Z)),

(A.4)

Cov
(
LỸ (z)

)
= LC(x,x)LT − [LC(x,X)LC(x,Z)LT

α ]

×
[

C(X,X) C(X,Z)LT
α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)LT

LαC(Z,x)LT

)

= LC(x,x)LT −AT
3 (x)C(X,x)LT −AT

4 (x)LαC(Z,x)LT .

(A.5)

We deduce the following:

E
[
Y c
N,M (x)

]
= E [Y (x)|Y (X) = y(X), ℓ(Z) ≤c LαY (Z) ≤c u(Z)]

= E [E[Y (x)|LαY (Z), Y (X)

= y(X)]|ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= µ(x) + aT
1 (x)(y(X) − µ(X)) + aT

2 (x)(µα(Z) −Lαµ(Z)),

(A.6)

Journal of Machine Learning for Modeling and Computing



Gaussian Process Regression in the Presence of Inequality Constraints 75

E
[
Y c
N,M (x)2

]
= E

[
Y (x)2|Y (X) = y(X), ℓ(Z) ≤c LαY (Z) ≤c u(Z)

]

= E
[
E
[
Y (x)2|LαY (Z), Y (X) = y(X)

]
|ℓ(Z)

≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= E

[
Cov

(
Ỹ (LαY (Z))|LαY (Z)

)

+ E

[
Ỹ (LαY (Z))|LαY (Z)

]2
|ℓ(Z)

≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= C(x,x)− aT
1 (x)C(X,x) − aT

2 (x)LαC(Z,x)

+ E

[
E

[
Ỹ (LαY (Z))|LαY (Z)

]2
|ℓ(Z)

≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= C(x,x)− aT
1 (x)C(X,x) − aT

2 (x)LαC(Z,x)

+ E
[
(E
[
Y c
N,M(x)

]
+ aT

2 (x)(LαY (Z)− µα(Z)))2|ℓ(Z)

≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= C(x,x)− aT
1 (x)C(X,x) − aT

2 (x)LαC(Z,x)

+ E
[
Y c
N,M (x)2

]
+ aT

2 (x)E
[
(LαY (Z)− µα(Z))2|ℓ(Z)

≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]a2(x)

= C(x,x)− aT
1 (x)C(X,x) − aT

2 (x)LαC(Z,x)

+ aT
2 (x)Cα(Z)a2(x) + E

[
Y c
N,M(x)2

]
,

(A.7)

so that

Cov(Y c
N,M (x)) = C(x,x)− aT

1 (x)C(X,x)

− aT
2 (x)LαC(Z,x) + aT

2 (x)Cα(Z)a2(x).
(A.8)

The two other expressions are obtained using the same decompositions of the expectation
function.

APPENDIX B. PROOF OF PROPOSITION 2

The result of Proposition 2.2 is a direct consequence of Eqs.(A.2) and (A.3), where we have
used the fact that in the normal distribution ofY (x)|Y (X) = y(X),LαY (Z), only the mean
depends onL(Z).
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APPENDIX C. EXPRESSION OF THE ANALYZED NUMERICAL FUNCTIONS

The three 1D functions,y1D
1 , y1D

2 , andy1D
3 , correspond to

y1D
1 :

{
[0, 1] → R

x 7→ 10(x− 0.5)3,
(C.1)

y1D
2 :

{
[0, 1] → R

x 7→ sin(10πx5/2)/(10πx),
(C.2)

y1D
3 :

{
[0, 1] → R

x 7→ 1/3(atan(20x− 10)− atan(−10)).
(C.3)

The 3D functiony3D corresponds to the function

y3D :

{
[0, 1]3 → R

x 7→ (x3 − x2
2)

2 + (x2 − x2
1)

2 + (1− x2)
2 + (1− x1)

2 + 3x1.
(C.4)

The 5D functiony5D corresponds to the function

y5D :

{
[0, 1]5 → R

x 7→ 10sin(πx1x2) + 40(x3 − 0.5)2(x4 + 0.25) + 5x5.
(C.5)
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