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Predicting the evolution of a representative sample of a material with microstructure is a fundamen-

tal problem in homogenization. In this work we propose a graph convolutional neural network that

utilizes the discretized representation of the initial microstructure directly, without segmentation

or clustering. Compared to feature-based and pixel-based convolutional neural network models, the

proposed method has a number of advantages: (a) it is deep in that it does not require featurization

but can benefit from it, (b) it has a simple implementation with standard convolutional filters and

layers, (c) it works natively on unstructured and structured grid data without interpolation (un-

like pixel-based convolutional neural networks), and (d) it preserves rotational invariance like other

graph-based convolutional neural networks. We demonstrate the performance of the proposed net-

work and compare it to traditional pixel-based convolution neural network models and feature-based

graph convolutional neural networks on multiple large datasets.

KEY WORDS: graph neural network, material microstructure, homogenization

1. INTRODUCTION

Predicting the evolution of a system with a complex initial state represents a wide class of phys-
ical problems of scientific and technological interest. Forinstance, simulating the evolution of
materials with complex microstructure is necessary for predicting the behavior of highly engi-
neered materials (Ghosh and Dimiduk, 2011; Herriott and Spear, 2020; Kraft et al., 1996; Li
et al., 2017; Stenzel et al., 2016; Yin et al., 2008). With theadvent of machine learning for phys-
ical applications and the availability of considerable experimental and high-fidelity simulation
data, models and architectures for these and related applications have begun to arise (Frankel
et al., 2019, 2020; Pandey and Pokharel, 2020; Vlassis et al., 2020). These models can be used
for a number of tasks such as subgrid accurate constitutive modeling (Frankel et al., 2019), mate-
rial design by structure property exploration (Noh et al., 2019), and uncertainty quantification of
materials with high intrinsic variability (Khalil et al., 2021). For this work, we are interested in
predicting the evolution of the physical response of a sample given its initial state and a history
of loading. For this class of problems, we assume the initialstate can be represented as a field
or collection of fields captured in a multispectral/multichannel image and this image is data on a
structured grid or an unstructured mesh.
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In the ever-expanding field of machine learning (ML) (Bishop, 2006; Goodfellow et al.,
2016; Hastie et al., 2005), there are many methods suitable to the task of supervised learning
where the objective is to represent an input-output map to high fidelity. Neural networks (NN)
(Goodfellow et al., 2016; Hopfield, 1982) are a particularlyversatile subcategory of machine
learning techniques suitable for regression tasks. They can be designed to be smooth, expressive
models of physical behavior and have been shown to be effective in reducing complex processes
to low-dimensional latent spaces (Fulton et al., 2019; Lee and Carlberg, 2019). In particular, con-
volutional neural networks (CNNs) (Albawi et al., 2017; LeCun et al., 1989; O’Shea and Nash,
2015; Qin et al., 2018) are an efficient version of fully connected networks applied to image
data. Their main advantage is the reduction of the weight space needed to encode images to a
manageable size by exploiting spatial correlation, locality, and similarity with a compact kernel
filter. They have been spectacularly successful in a varietyof image and time series applications
(Krizhevsky et al., 2012; LeCun et al., 1998; Liu et al., 2017).

Graph convolutional neural networks (GCNNs) (Bronstein etal., 2017; Bruna et al., 2013)
can be seen as counterparts to CNNs which operate on topologically related, as opposed to spa-
tially or temporally related, data. Bruna et al. (2013) recognized that many of the properties that
make CNNs effective on gridded data could be translated to graph-based data, such as data on
unstructured meshes. They developed both local (e.g., pooling) and spectral/global (e.g., convo-
lution in the Fourier domain) operations on graph data. Theymade the connection with Fourier
bases through the graph Laplacian of a binary adjacency matrix to translate the convolution op-
eration to graphs. In another arena, graph wavelets/graph signal processing, some of the graph
convolution developments were preceded by Hammond et al. (2011) who developed the mathe-
matics of spectral analysis and filtering on the more generalcontext of kernel-weighted graphs.
In order to surmount the global and expensive nature of applying filters in the spectral domain,
where an eigen-decomposition is required, Defferrard et al. (2016) (ChebNet) introduced spa-
tially compact polynomial filters. In particular, they approximated the action of a general spec-
tral filter with a truncated Chebychev expansion of the eigenvalue matrix of the graph Laplacian,
leveraging the fact that repeated application of these filters (k times) leads tok-hop diffusion
of information. Kipf and Welling (2016a) took these developments to their logical conclusion
with the graph convolutional network (GCN). They truncatedthe Chebychev expansion to first
order and relied on deep/multilayer networks to build expressive representations. Appendix A
provides a brief synopsis of the GCN which we base our developments on. For a more complete
overview of GCNNs see reviews by Wu et al. (2020), Zhang et al.(2020), and Zhou et al. (2020).
Note that related kernel-based NN methods, such as the work of Trask et al. (2020, 2019), exist
and have been shown to be effective in physical applications. Also, Bronstein et al. (2017) pro-
vides an insightful perspective on applications of deep learning to non-Euclidean data, graphs,
and manifolds as well as the relevant mathematics.

One of the issues with using convolutional NNs for physical problems is the need to preserve
fundamental physical relationships such as frame indifference, where scalars are unchanged (in-
variant) to rotational changes in observer and tensorial quantities rotate in a corresponding way
(equivariance) with rotation of the observation coordinate frame. The advantages of preserving
these spatial symmetries in filter based NNs was recognized early on (Rowley et al., 1998). By
construction CNNs embed shift/translation invariance where every local neighborhood is pro-
cessed in a similar manner. Traditional convolutional filters operate strictly on structured grids
of pixelated images and generally do not preserve rotational symmetries but provide a richer set
of filters than methods that do. Numerous efforts have been made to endow CNNs with rotational
invariance. Dieleman et al. (2016) augmented the layers of aCNN to add rotations of the image
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by π/4 and inversions. Cohen and Welling (2016) outlined the mathematics whereby a convolu-
tional network will be equivariant with respect to any group, including rotation and reflections.
Worrall et al. (2017) developed filters based on circular harmonics. Chidester et al. (2018) used
a discrete Fourier transform to embed rotational invariance by filter augmentation. Using con-
cepts from abstract algebra, Kondor and Trivedi (2018) proved that convolutional structure is a
necessary and sufficient condition for equivariance to the action of a compact symmetry group.
This finding serves as a requirement for CNN to be equivariant. Recently, Finzi et al. (2020)
provided a significant extension of Cohen and Welling’s treatment of small, discrete symmetry
groups to continuous (Lie) groups, e.g., rotations in threedimensions, the special orthogonal
group SO(3). In contrast to pixel-based CNNs, the existing graph-based filters can operate on
unstructured spatial data by use of user-defined neighbor attributions but lose some spatial infor-
mation in the process. Furthermore, graph-based convolutional networks can have an inherent
rotational invariance, assuming the node data is invariant/equivariant, since the representation
has been lifted out of its spatial embedding.

Currently, there are many applications of pixel-based CNNsto physics and mechanics prob-
lems that have data on a structured grid. Some of the early work focused on classification and
simple property prediction. Chowdhury et al. (2016) used a CNN to classify microstructures.
Lubbers et al. (2017) developed a CNN-based method for inferring low-dimensional microstruc-
ture representations and used the model for microstructuregeneration. DeCost et al. (2017) also
applied CNNs to microstructure representations and used the model to connect processing to
structure. Contemporaneous with these developments, Kondo et al. (2017) used a CNN to pre-
dict ionic conductivity based on microstructure. Many publications have followed these initial
applications, some have targeted evolution prediction tasks. Frankel and collaborators devised
a hybrid between a CNN and recurrent NN (RNN) network to predict the elastic-plastic stress
response of polycrystalline samples (Frankel et al., 2019)and have used a convolutional long
short-term memory architecture (convLSTM) (Shi et al., 2015), which integrates CNN and RNN
aspects into a single architecture, to predict the evolution of the stress field (Frankel et al., 2020).
The latter work (Frankel et al., 2020) was based on convLSTM network of Shi et al. (2015),
which was developed for atmospheric predictions and provides a framework for representing
the solutions of time-dependent partial differential equations. On the other hand, we are aware
of only a few applications of GCNNs to physics or mechanics todate. Vlassis et al. (2020)
employed a feature-based graph neural network to model the elastic interaction of grains in
polycrystalline samples using an adaptation of the CNN-RNNnetwork in Frankel et al. (2019).
Chen et al. (2020) employed a GCNN trained to sparse and unstructured diffusion data to model
human tissue.

In contrast to these approaches, the proposed graph-based convolutional neural network pro-
cesses the structured or unstructured microstructural images directly and in an invariant manner.
The adjacency matrix, which conveys/defines neighbors and spatial information, is based on the
topology of the image data itself. The formulation does not require an obvious segmentation of
the microstructure, which may be occluded by noise in real data. Most importantly, it does not
require featurization of the multichannel/hyperspectralimage data (Bessa et al., 2017; Mozaffar
et al., 2019). Nevertheless, as we will show, it can benefit from obvious features but no feature
engineering is needed to obtain good accuracy. The main contributions of the work are a gen-
eralization of graph/pixel CNNs for predicting homogenized response of samples with complex
microstructure and a demonstrative comparison of performance relative to existing methods.

In Section 2 we describe the physical problem, which is a homogenization of physical re-
sponse suitable for subgrid/multiscale applications (Frankel et al., 2019; Jones et al., 2018). In
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particular we apply the methods to homogenization of the evolution of stress of a sample volume
where the internal state is determined by microstructure. In Section 3 we describe the proposed
neural network architecture and relate it to traditional CNNs and feature-engineered GCNNs.
In Section 4 we focus on comparing the performance of pixel-based convolutional neural net-
work (CNN), a feature-based “reduced” graph convolutionalneural network (rGCNN), and the
proposed “direct” graph-based convolutional neural network (dGCNN) which operates directly
on structured or unstructured image data like a CNN without the need for featurization or seg-
mentation required by the rGCNN. To assess the performance of these models, we employ two
exemplars of the homogenization problem: (a) the prediction of the stress evolution in a porous
metal and (b) the prediction of the stress evolution in a polycrystalline material. With these
physical problems we created four datasets using (a) an ensemble of three-dimensional (3D)
realizations of the porous metal, (b) an ensemble of two-dimensional (2D) realizations of poly-
crystals, (c) a 3D ensemble with low variance in the grain sizes, and (d) a 3D ensemble with high
variance in the grain sizes, all of which are subjected to a tension deformation process. The first
dataset is used to demonstrate the efficacy of the proposed mesh-based GCNNs on unstructured
meshes; the remainder are used to compare CNNs to GCNNs on structured meshes. We exploit
the lower computational cost of the 2D polycrystalline dataset in a deeper exploration of vari-
ants and hyper-parameters than would be possible with the 3Ddata. In Section 5 we summarize
the findings of exploring data and parameter efficiencies, architecture variations, and adjacency
manipulation, and discuss ongoing work.

2. PHYSICAL PROBLEM

Predicting the physical response of a sample given a complexinitial state is representative of a
general class of problems in homogenization (Mura, 2013; Nemat-Nasser and Hori, 2013). In
particular, we focus on the prediction of the evolution of the volume average of stressσ in a
representative volumeV :

σ̄(t) =
1
V

∫

σ (ǫ(t),φ(X)) dX, (1)

given a microstructural fieldφ(X) observed at timet = 0 and a time-dependent, homogeneous
loading determined by the imposed strainǫ(t). This class of problems is the basis for multiscale
models (Trovalusci et al., 2009), material structure optimization (Le et al., 2012), and material
variability and uncertainty quantification (Khalil et al.,2021). The microstructural fieldφ(X)
characterizes location-dependent inhomogeneity that influences the state of the material, where
X is the position vector in the reference configuration of the sample. Examples ofφ include
phase in multiphase composites (Bouquerel et al., 2006), elastic modulus in a material with
inclusions (Roduit et al., 2009) or pores (Heckman et al., 2020), and the local defect density in a
defective material (̌Cekada et al., 2007).

Rotational equivariance requires

Q⊠ σ̄(t,φ) =
1
V

∫

σ (Q⊠ ǫ(t),Q ⊠φ(X)) dX, (2)

whereQ is an orthogonal tensor (rotation) and⊠ is the Kronecker product, which is defined
asQ ⊠ A = QAQT =

∑

i,j AijQei ⊗ Qej for a second order tensorA, where⊗ is the
tensor product. In effect this is a requirement that rotation of the inputs byQ must lead to a
corresponding rotation of the output byQ. It has fundamental consequences for the form that
the functionσ(ǫ,φ) is allowed to take (Jones et al., 2018; Silhavy, 2013).
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2.1 Exemplars

We employ two exemplars to test and demonstrate performanceof the NN architectures: (a) a
porous metal and (b) a polycrystalline metal. The mechanical response in both systems is com-
plex. They undergo an elastic-to-plastic transition with loading and heterogeneous deformation
due to the microstructure. For simplicity and data storage/memory considerations we focus on
the primary component,σ(t), of the volume averaged stressσ̄ for both exemplars. Each dataset
was created with standard, well-documented software packages (Groeber and Jackson, 2019;
Salinger et al., 2016; Stewart and Edwards, 2020).

2.1.1 Porous Plasticity

In the porous metal exemplar,φ(X) is the local density field withφ(X) = 0 in the pores
and equal to the density of the metal elsewhere, which we normalize to one. Rizzi et al. (2018)
describes a similar material model. Here aluminum was chosen as a representative material.

The metal response follows from a widely employedJ2 elastic-plastic model (Lubliner,
2008) where the stressS is given by a linear elastic rule:

S = C : Ee. (3)

Here “:” is a double inner product that allows the fourth order elastic modulus tensorC to
map the elastic strainEe to the stressS. Note thatEe is distinct from the applied strainǫ(t)
driving the evolution of the sample. For an isotropic material like aluminum the components of
C reduce to

[C]ijkl =
E

(1+ ν)

(

ν

(1− 2ν)
δijδkl +

1
2
(δikδjl + δilδjk)

)

, (4)

which depends only on Young’s modulusE = 59.2 GPa and Poisson’s ratioν = 0.33.
The plastic flow is derived from the von Mises yield condition

σvm(S) − σ̌(ǫp) ≤ 0, (5)

which limits the elastic regime to a convex region in stress space and offsets the elastic strainEe

from the total strain. Hereσvm =
√

(3/2)s · s is the von Mises stress wheres = S − tr(S)I is
the deviatoric part ofS, andǫp is the equivalent plastic which is a measure of the accumulated
plastic strain computed from the plastic velocity gradientLp. The yield limit σ̌ is given by a
Voce hardening law

σ̌ = Y −H exp(−αǫp), (6)

with the following parameters: initial yieldY = 200.0 MPa, hardeningH = 163.6 MPa, and
saturation exponentα = 73.3.

Realizations were created by a random placement scheme of spherical voids in the sample
cube with constraints on pore overlap with other pores and the sample boundary (Brown et al.,
2018). This process created unit cells with mean porosity 0.09 ± 0.03 following a beta distribu-
tion and at most 20 pores per cell. The cubic samples were on the order of 1.5 mm3 with pore
radius≈ 150µm. Pores in each of the 1121 realizations we created were explicitly meshed and
resulted in unstructured discretizations with 14,640 to 101,360 elements.

Each realization was subjected to quasi-static uniaxial tension up to 20% engineering strain
with minimal Dirichlet boundary conditions (no lateral constraints, uniform displacement on the
ends). These simulations were performed with Sierra (Stewart and Edwards, 2020). From these
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simulations we extracted microstructureφ(X), applied strainǫ(t), and volume-averaged stress
σ̄(t) data to demonstrate the efficacy of mesh-based GCNNs in Section 4.

2.1.2 Crystal Plasticity

Our second exemplar of the homogenization problem, Eq. (1),used a crystal plasticity (CP)
constitutive model whereφ(X) is a field of crystal orientations associated with grains. Although
each grain has a relatively simple response, the collectivebehavior is difficult to predict without
a detailed simulation since each grain influences its neighbors (Frankel et al., 2019). For this
exemplar, steel was chosen as a representative material.

The response of each crystal follows an elastic-viscoplastic constitutive relation based on
well-known mesoscale models (Bishop and Hill, 1951a,b; Dawson, 2000; Kroner, 1961; Man-
del, 1965; Roters et al., 2010; Taylor, 1934). For the crystal elasticity, we employed the same
linear stress model, Eq. (3), as in the porous metal exemplaralbeit with a different elastic mod-
ulus tensorC. In this case ferrous (face centered) cubic symmetry forC was assumed, and the
independent components of the elastic modulus tensorC were those of steel:C11, C12, C44 =
{204.6, 137.7, 126.2} GPa. The overall response reflects the anisotropy of each grain; however,
the response of polycrystals with random orientationsφ(X) was determined by the collective
response, which tends to isotropy with large sample sizes. In each crystal, plastic flow

Lp =
∑

α

γ̇αsα ⊗ nα, (7)

can occur on any of the 12 face-centered cubic slip planes, whereLp is the plastic velocity
gradient,γ̇α is the slip rate,sα is the slip direction, andnα is the slip plane normal. We employed
a common power-law form for the slip rate relation,

γ̇α = γ̇0

∣

∣

∣

∣

τα

gα

∣

∣

∣

∣

m−1

τα, (8)

driven by the shear stressτα resolved on slip systemα. The reference slip rate was chosen to be
γ̇0 = 1.0 s−1, the rate sensitivity exponent wasm = 20, the initial slip is set to zero, and the slip
resistancegα was given the initial valuegα = 122.0 MPa (Jones et al., 2018). The slip resistance
evolved according to (Kocks, 1976; Mecking et al., 1976)

ġα = (H −Rdgα)
∑

α

|γ̇α|, (9)

where the hardening modulus was chosen to beH = 355.0 MPa and the recovery constant was
Rd = 2.9. Both Eqs. (8) and (9) are integrated with standard implicit numerical integrators as
part of a global equilibrium solution algorithm. See Jones et al. (2018) for additional details.

For this exemplar, we created multiple sets of{φ(X),ǫ(t);σ(t)} data to train and compare
the NN models described in the next section: (a) a 2D dataset consisting of 12,000 realizations
(Frankel et al., 2019), (b) a 3D dataset consisting of 10,000realizations with low variance in
the grain sizes, and (c) a corresponding 10,000 realization3D dataset with high variance in the
number of grains per realization. The nominal sample lengthfor each realization was 1µm. The
variance in the grain sizes is directly related to the variety of grain topologies in the particular
ensemble; this aspect will be used in explorations described in Section 4.
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Although the GCNN method can be applied to unstructured grids and complex geometries of
different sizes, the CNN cannot without interpolation or some other intermediate data process-
ing. In this exemplar we chose structured computational grids to facilitate direct comparison of
pixel- and graph-based methods. The 2D dataset was computedon a 32 × 32 structured FE mesh
and output over 31 time steps (max strain 0.3%); and the two 3DCP datasets used a 25 × 25 × 25
mesh and output over 51 steps (max strain 0.4%). Each polycrystal realization was subjected to
quasi-static uniaxial tension at a constant engineering strain-rate ofǫ̇ = 1 s−1 with minimal
Dirichlet boundary conditions. The time evolution of each system was observed over a limited
number of time-steps that covered the physics of interest: the transition from elastic to full plastic
flow.

Realizations of the microstructureφ(X) consisted of a crystal orientation vector field that
encodes the rotation of a crystal in a reference orientationto that in the polycrystal (Frankel
et al., 2019). The orientation vectorφ is the unit eigenvectorp of the rotation tensorR, which
takesC from a canonical orientation to that of a particular grainR ⊠ C, scaled by the rotation
angleθ around that axis

φ = θp such thatRp = p and‖p‖ = 1, (10)

whereθ can be obtained from the nonunitary eigenvalues ofR. Refer to Frankel et al. (2019)
for more details. The computational cell for each realization is a cube, which is partitioned
into subregions, called grains, with distinctφ(X). The subregions evoke a natural topology
for a grain-based graph (Vlassis et al., 2020). All polycrystal realizations where created with
Dream3D (Groeber and Jackson, 2019) using spatial correlations to obtain a reasonable number
of grains and angle distribution functions that gave a uniform texture. The 2D simulations were
run with Albany (Salinger et al., 2016), and the 3D simulations were run with Sierra (Stewart
and Edwards, 2020). See Jones et al. (2018) and Frankel et al.(2019, 2020) for related efforts.

2.2 System Characterization and Response

In each exemplar, the nonlinear plasticity model and heterogeneous microstructure evoke a com-
plex response to loadingǫ(t). The local stress fields reflect internal inhomogeneities atthe pores
or the grain boundaries, as characterized byφ(X), and display large gradients at elastic-plastic
transitions. Spatial averaging to extract the system responseσ̄(t) does some smoothing of the
evolution, but the range of microstructures evokes a distribution of responses. The behavior is
generally similar across the ensemble of realizations, butvariations are difficult to predict from
simple statistics such as mean grain or pore size.

2.2.1 Porous Plasticity

Figure 1 shows the distribution of sample porosities over anensemble of 1121 realizations. The
distribution follows the target beta distribution with 0.09 mean porosity and a standard deviation
of 0.03.

Due to variation in the number of voids, their size, and theirplacement relative to each
other and inside the geometry, the response varies as the pores decrease the material stiffness
and neighboring pores increase local stress concentrations. The three representative realizations
shown in Fig. 2 at the final strain of 20% display significant heterogeneities in their deformation
due to the dense packing of large pores. The middle realization, in particular, clearly shows a
plastic localization plane due to a collection of pores leading to a weak section in the sample. The
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FIG. 1: Porosity distribution

FIG. 2: Pore realizations showing exterior and interior surface mesh at 20% strain colored by tensile stress
(blue:< 0, red: 700 MPa). The original, undeformed configuration is outlined.

stress field for each of the samples displays correspondingly large local variations and gradients.
The average stress histories,{σ(t)}, shown in Fig. 3 display a variation of 22%. After rescaling
by a mixture rule based on the solid fraction, 10% variation remains. This indicates that the
details of the pore configurations control a significant portion of the plastic response.

2.2.2 Crystal Plasticity

The CP microstructure also evokes a complex and evolving stress field, as Figs. 4(b)–4(d) illus-
trates.

Descriptive statistics of the 2D and 3D ensembles are shown in Fig. 5. The distribution
of grain densities of each realization (the reciprocal of the number of grains in the particular
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FIG. 3: Porous elastic-plastic stress response. Color distinguishes the 64 realizations shown.
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FIG. 4: Polycrystal orientation colored by (a) the first Euler angle, (b) elastic stress state, (c) transition
stress state, and (d) plastic stress state, colored byσ11 with the same scale for all three stress state panels
(blue: 0 MPa, red: 250 MPa)
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FIG. 5: Comparative statistics for 2D and 3D high- and low-varianceCP ensembles. Grain densities per
realization and volumes per grain have been referenced to unit cell volumes in 2D and 3D, respectively.

realization) is relatively broad and long-tailed in the high-variance 3D dataset compared to that
of the low-variance 3D dataset. The grain distribution of the 2D dataset has more compact sup-
port relative to the high-varance 3D ensemble but is significantly wider than the low-varance
3D ensemble, thus representing an intermediate distribution. The distribution of the individual
grain volumes over all realizations show similar trends. The peak width of the high-variance 3D
dataset, however, is relatively narrow compared to the low-variance 3D dataset. The 2D data has
a pronounced tail and indistinct peak which indicates a widevarance in grain sizes across the
ensemble. Figure 6 illustrates how the variance of the inputsφ(X) is reflected in the variance
of the outputσ(t).

These datasets are particularly challenging to represent,relative to existing work, since each
realization had a distinct topology/grain assignment and texture. Previous work (Frankel et al.,
2019; Vlassis et al., 2020) employed a limited number of grain topologies (the tiling of the do-
main by distinct subregions) with unique texture assignments (the specific orientations assigned
to the grains). Specifically, here each dataset had on the order of 10,000 unique topologies,
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FIG. 6: CP stress response for (a) 2D, (b) 3D low grain size variance,and (c) 3D high-variance ensembles.
Color distinguishes the 64 realizations shown.

whereas in Frankel et al. (2019) and Vlassis et al. (2020) there were on the order of 10–100
topologies. It is plausible, in a small dataset, when the number of convolutional filters approaches
the number of microstructural topologies, a simpler learning process results since each filter can
specialize to a particular topology. In this study this is not the case since each of the 104 samples
had both a unique grain structure and grain orientation (texture). Clearly, with datasets of this
size and variety, the filters must learn generalized, predictive features.

3. NEURAL NETWORK ARCHITECTURE

The overall neural network (NN) architecture to model the problem of interest Eq. (1) is analo-
gous to the hybrid network from our previous work (Frankel etal., 2019, 2020), which was also
used in Vlassis et al. (2020). It is illustrated in Fig. 7 and consists of two main components: (a)
a convolutional neural network (CNN or GCNN, orange) to process the spatially complex initial
stateφ(X) and (b) a recurrent neural network (RNN, blue) to evolve the quantity of interest
σ(t) given the time-dependent loadingǫ(t) as an input. As can be seen in Fig. 7, the output
features of the CNN become inputs to the RNN along with the time-dependent loading. This
hybrid NN has the potential to be quite complex with many hyper-parameters, e.g., a different
kernel width for each convolution layer and different number of nodes for each dense layer.

In this work we simplify the NN architecture from that we previously employed to facilitate
exploration and comparison of CNN and GCNN approaches. Thisis not particularly constrain-
ing since there are redundancies in the approximation powerof such a network. We determine
the shape of the network diagrammed in Fig. 7 with three hyper-parameters: (a) the number of
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filters,Nf, applied in parallel to node data; (b) the number of convolutional layers,Nc; and (c) the
number of densely connected layers,Nd, post-convolution used in the reduction of image to (hid-
den) features. In the following we will use the abbreviation(Nf :Nc:Nd) to refer to architectures
defined by these three parameters, for instance(4:2:1) is a network with 4 filters, 2 convolutional
layers, and 1 dense layer. Note the global (average) poolingafter the convolutional layers reduces
the output of the image processing CNN toNf outputs and hence determines the width of the
entire convolutional component including the densely connected layers. In our previous work
(Frankel et al., 2019) we used an encoder for this task. Figure 8 illustrates the details of a typical
convolutional component in the overall architecture (yellow in Fig. 7). A batch normalization
layer (not shown) is inserted between each convolutional layer to aid in conditioning the output
and training (Bjorck et al., 2018). To facilitate comparison of the CNN and GCNN approaches
we fix the kernel width of pixel convolutional layer to 3 to make an analog of a graph where
connections are nearest neighbors for the physical problem. The particular RNN we employ is
the well-known long-short-term memory unit (LSTM) (Hochreiter and Schmidhuber, 1997). In
preliminary studies we also tried another standard RNN, thegated recurrent unit (GRU) (Cho
et al., 2014), which achieved marginally worse accuracy on average. The RNN usedtanh acti-
vations and all other layers employ rectifying linear units(ReLUs) for their nonlinear activation
functions. We also triedtanh activations for the entire network, but that configuration choice
performed relatively poorly (Glorot and Bengio, 2010; Glorot et al., 2011). Lastly we apply the
standard technique of using a linear mixing layer (no nonlinearity, only affine transformation)
just prior to the output of interest.

The primary variation in the networks we explore is in the convolutional unit (yellow in
the schematic Fig. 7 and shown in detail in Fig. 8) and in particular the construction of the
convolution filter, which is our focus.

3.1 Proposed Graph Structure

At the level of digitized data in a pixel-based CNN, the microstructural input is values ofφ at
pixels (or a cell or an element) that are addressed in a grid-wise fashion. In general the field
φ(X) can be represented as a pixelized image on a structured grid or on an unstructured mesh.
For a graph representation, such as that used in Vlassis et al. (2020), the reduction of a clearly
segmentable microstructure, such as that illustrated in Fig. 4(a), leads to nodes representing ho-
mogeneous regions and graph edges encoding adjacency between regions. This reduction loses
spatial information such as the shape of the regions in the clustering/aggregation to nodes. Hence,
that framework typically requires enrichment of the node data x by featurization, i.e., picking
measures/statistics that quantify the information lost inthe reduction. In that approach, the num-
ber of nodesNnodesis variable and equal to the number of regions in the particular sample. In that
context, and in general, the node datax is number of nodesNnodesby number of input featuresNf

derived fromφ(X). Some features are obvious, such as the value ofφ in the clustered region
represented by the node and the volume of the region, and others are not. It is easy to see that
these features can result from preconceived filters and clustering operations applied to image
φ(X). We will refer to this feature-based, reduced graph convolutional network as a rGCNN.

To avoid the nebulous task of featurization, we propose a direct graph CNN (dGCNN) where
x is identicallyφ(X) at the cell/element centers of the computational grid but flattened (in an
arbitrary order) to fit in the graph convolution paradigm. The graph convolutions are permu-
tationally invariant, so ordering does not affect output. In the proposed networkNnodes is the
number of pixels or unstructured elements in the image, and the edges are derived directly from
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the mesh topology, i.e., element/pixel neighbors are graphneighbors. This approach has qualita-
tive advantage of being a graph-based representation, which has intrinsic invariance properties,
while working directly on the structured or unstructured data φ(X), not a segmented or clus-
tered version of it. This representation does not preclude the use of derived, informative features
to boost accuracy by adding them tox, as we will demonstrate.

3.2 Comparison of Pixel- and Graph-Based Convolution

To understand the difference between a pixel-based and a graph-based convolution, let us exam-
ine a single convolutional filter. Note that the proposed architecture shown in Fig. 7 and Fig. 8 has
several filters. In general, a convolutional filter has trainable weightsW and biasb. The weight
matrix W effects an affine transform by matrix multiplication that mixes input featuresx into
output featuresy, andb provides an offset to tune activation of the subsequently applied nonlin-
earityy = f(x). In a traditional grid/pixel convolution (CNN), the node features are addressable
by grid index, for instance in 2D:

y(i,j) =
∑

k′,l′

W(k′,l′)x(i+k′,j+l′) + b, (11)

loading ǫ(ti) microstructure φ(xI)

convolution

convolution

...

pooling

dense

...

recurrent

recurrent

...

mixing

stress σ(ti)

FIG. 7: Hybrid neural network with CNN (yellow/lighter) and RNN (blue/darker) components to transform
the inputs (red): spatially dependentφ(X) microstructure and time-dependent loading historyǫ(t), to the
outputσ(φ, t) (cyan/bottom)
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Input: node data x

GraphConvolution(A(0), Nf = 4,f = ReLU) GraphConvolution(A(1), Nf = 4,f = ReLU)

Concatenate

GraphConvolution(A(0), Nf = 4,f = ReLU) GraphConvolution(A(1), Nf = 4,f = ReLU)

Concatenate

Pooling(GlobalAverage)

Dense(n = Nf,f = ReLU)

Dense(n = Nf,f = None)

Output: features

FIG. 8: A (4:2:2) convolutional unit.A(i) is the adjacency matrix for theith neighbors (0 is self),Nf is
the number of filters, andf is the activation function for the layer. Note the last denselayer is linear (no
nonlinear activation function).

wherei, j are indices over the pixelated image/discretized field, andk′, l′ are indices over the
convolution/filter which isNkernel×Nkernel in size, withNkernel ≪ Nnodesbeing the kernel width.
To see the similarities with graph convolution we recast this convolutional multiplication in
Eq. (11) by mapping both(i, j) and(k′, l′) to single indicesI andL by imposing a fixed, arbi-
trary ordering across the kernelW (refer to Fig. 9). For the flattened inputx, the corresponding
outputy is

yI =
∑

J

[

∑

K′

WK′A
(K′)
IJ

]

xJ + bK′ , (12)

where multiplication by a matrixA(K′) provides a masking operation translating the global in-
dices to local dependencies. HereA(K′) is a globalNnodes× Nnodesadjacency matrix for each
entryK ′ in the convolutional kernel (i.e., each pixel under the filter kernel is treated uniquely);

andA(K′)
IJ = 1 if I andJ are neighbors (by some definition, e.g., shared face, sharednode in

the computational mesh or distance) and 0 otherwise. The definition of neighbors determines the
direct interactions, in rough analogy to choosing the kernel width in a pixel-based convolutional
filter.

Likewise, for a graph convolutional network (GCN) layer (Kipf and Welling, 2016a), the
convolution operation takes the form:

yI =
∑

J

WAIJxJ + b, (13)

where the adjacencyA plays the same masking/connectivity role asA(K′) and an ordering of the
input datax is necessary to associate the indicesI andJ with particular cells. AgainAIJ = 1
if I andJ are neighbors by some definition and 0 otherwise. Based on thederivation of the
GCN (refer to Appendix A), self-loops are added such thatAII = 1. For each filter there are
two trainable parameters,W andb, versuskd for a pixel-based CNN filter, whered is the spatial
dimension andk is the kernel width. These graph-based filters have permutational invariance by
construction since all neighbors have the same weight. Theyare also typically normalized by the
number of neighbors, for instance in a GCN, the binary adjacency matrixÃ is normalized by the
degree matrixDIJ =

∑

I ÃIJδIJ

A = D−1/2ÃD−1/2, (14)

to convey average neighborhood information and improve theconditioning ofA.
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FIG. 9: Convolutional filters in 2D: (a) pixel: CNN where all neighbors have independent weights (denoted
by colors); and alternative GCN-like filters that preserve invariant outputs: (b)∗: edges and nodes have
separate weights; (c) #: all edges have a single weight; (d) O: all neighbors have a single weight; (e) X: all
node neighbors have single weight; (f) +: all edges have a single weight. Edge neighbors share an edge/face,
whereas node neighbors only share a vertex/node. Color: trainable, gray: determined by trainable, white:
not used.

Finally, in both the pixel and graph convolutional cases an activation functionf is applied
element-wise to the resulting node datay

x† = f (y(x)), (15)

to obtain the inputx† to the next layer from that of the present layerx.
Clearly the adjacencyA plays a crucial role in convolution by defining what constitutes influ-

ence between nodes. In physical problems typically influence is local and decays with distance.
For some applications, such as electrostatic interactions, the interactions do not decay quickly
with distance and hence are long-ranged (Li et al., 2020). Most other applications have relatively
short-ranged influence, such as contact/interface interactions. As mentioned, the source field for
the microstructure is a pixelated image grid or computational mesh which has its own obvi-
ous topology and neighbors. In the proposed direct graph we define adjacency by the pixel/cell
neighbors of the image grid/mesh, not by the dataφ(X) on it. When reduced to a graph in this
fashion, where nodes are the pixels/cells, the only topologically distinct nearest neighbors are (a)
those that share an edge with the particular cell or (b) only avertex. In CNNs compact kernels
are preferable since they limit the number of parameters that need to be trained. For GCNNs,
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and in particular the GCN, neighbors are not distinct and hence there is only a single weight. As
in CNNs, longer range influence can be captured by multiple layers applied in sequence.

Kipf and Welling (2016a) GCN is well-known to be an effective(nonspectral) convolutional
filter. By comparing it to standard CNNs we employed in our previous work (Frankel et al., 2019)
we devised a few variants based on manipulating the node adjacencies and associated weights.
Figure 9 shows the variety of rotationally and permutationally invariant filters we explored. Note
these filters assume that the neighbors are at equivalent distances from the node at the center and
the cells are of comparable sizes. We generalize this type offilter to multiple adjacenciesA(K′)

with their associated weightsWK′ via:

yI =
∑

J

[

∑

K′

WK′A
(K′)
IJ

]

xJ . (16)

The pixel-based filter in a standard CNN treats every pixel inthe kernel independently [refer
to Fig. 9(a)] and retains a sense of how pixels located relative to the central pixel. This richness
has the side effect of not satisfying the symmetries required by invariance. To elaborate with an
illustration, if the data{φ,ǫ;σ} is rotated byπ/2 around a coordinate axis, the data at pixels
are uniquely mapped byQ to new indices without interpolationx∗ = Qx. In this simple case the
linear transformation

QyI ≡ Q
∑

J

[

∑

K′

WK′A
(K′)
IJ

]

xJ 6=
∑

J

[

∑

K′

WK′A
(K′)
IJ

]∗

QxJ , (17)

in Eq. (12) applied to the inputsxJ = φ(XJ ) will not produce a rotated output since image
x = φ(X) rotates but the filter[WK′A(K′)] for theK ′th adjacency does not. A graph treat-
ment, unlike a pixel convolution, effectively allows the transformationQ to commute with the
adjacency,QA(K′)x = [A(K′)]∗Qx, since the node association of the graph adjacency is in-
variant to spatial transformations. Refer to Kondor and Trivedi (2018) and Finzi et al. (2020)
for a more formal treatment. The equivariance problem remains for the action of the weights
WK′ .

Permutational invariance of the weights is one means of solving this issue. Strictly speak-
ing, the weights of all of the neighbors of the central pixel are required to be identical for per-
mutational invariance (and for invariance with respect to arbitrary rotations). We implemented
filter variants where edge and vertex weights are used exclusively [Fig. 9(f) uses edge neighbors
whereas Fig. 9(e) employs only node neighbors] or given independent weights, such as the “∗”
pattern in Fig. 9(b). These filters are in contrast to the CNN filter, shown in Fig. 9(a), which
has no inherent symmetries. Note there is some evidence thatwith sufficient data CNNs learn
rotational invariance (Quiroga et al., 2018) but the benefits of a smaller parameter space and a
compact representation that satisfies this constraint exactly are clear. In the GCN, as designed
by Kipf and Welling (2016a), the weight of the center [shown in gray in Fig. 9(f) vs. colored
in Fig. 9(c)] was chosen to be the same as the neighbors (referto Appendix A). In this work
we also tried variants where the self-weight is independentof the neighbor weight [Fig. 9(c) vs.
Fig. 9(f)]. As in Eq. (12), each independent, trainable weightWK′ can be associated with a dif-
ferent predetermined, binary adjacency matrixA(K′), or, equivalently, the weighted adjacency
∑

K′ A
(K′)
IJ WK′ can be considered the trainable entity.
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4. RESULTS

To establish the efficacy of the proposed GCNN-RNN architecture applied directly to unstruc-
tured mesh data without featurization we demonstrate its performance on the porous material
dataset. Since hyper-parameter optimization and other computationally intensive tasks are more
feasible with the 2D dataset, we use it explore a variety of hyper-parameters and architecture
choices with the 2D dataset. After determining what graph-based filters perform well and have
good accuracy per parameter and dataset size, we demonstrate the proposed architecture on the
two 3D CP datasets.

The data was conditioned to aid training. The input dataφ(X) andǫ(t) were normalized
by their maximum values since both had lower bounds of zero. The output dataσ(φa, t) was
transformed to the difference∆σ(φa, t) between the dataσ(φa, t) and its mean trend〈σ〉 =
(1/N)

∑

a σ(φa, t) (N is the number of realizations) and normalized by the standard deviation
of σ(φa, t) over timet. We chose to train the model responseσ̂(φa, t) to the difference from the
mean trend to emphasize the variation in response between microstructuresφa. We evaluated
the performance of each of the convolutional networks primarily with the root mean squared
error (RMSE)

ε(t) =
1

max〈σ〉

√

∑

a

(σ̂(φa, t)− σ(φa, t))
2, (18)

relative to the maximumσ over the dataset, and the (Pearson) correlation coefficient

C(t) =

∑

a ∆σ̂(φa, t)∆σ(φa, t)
√
∑

a ∆σ̂(φa, t)
2
∑

a ∆σ(φa, t)
2
, (19)

of the normalized data. In Eqs. (18) and (19) the sum is over all realizationsa in the test set, and
the NN model response is denoted asσ̂(φa, t). We used a 70/10/20 train/validation/test split for
the smaller porous material dataset and a 80/10/10 split forthe larger CP datasets.

Recall the abbreviated architecture naming convention(Nf :Nc:Nd), which will be used
throughout this section.

4.1 Demonstration on Unstructured Mesh Data

We used the smaller 3D porous material dataset to demonstrate that GCNNs applied directly
to unstructured mesh data are effective at representing homogenized material behavior. For this
study we used a (32:4:2) convolutional unit with “O” type filters that treat all nearest neighbor
elements equally. The field dataφ(X), in this case, is the binary density field (0: void, 1: metal)
on the native unstructured computational mesh. Since element and systems sizes varied across
the ensemble, we augmentedφ(X) with the volumes. The stress responseσ̄(t) is composed of
400 tensile loading steps to reach 20% strain. Since each realization has a different mesh and
each adjacency matrix is large (on the order of 105–106 rows and columns) albeit sparse, we
trained the network by evaluating and updating the network weights one sample at a time, i.e., a
batch size of 1.

The predictions for eight randomly selected trajectories shown in Fig. 10 are smooth and dis-
play minimal errors that are fairly uniform across the evolution. The initial elastic regime is well
captured, as is the ultimate (peak) strength and subsequentplastic flow. Over the entire test set
of 224 samples, the normalized mean RMSE was 0.00409 with 0.00052 standard deviation, and
the mean correlation was 0.995. Clearly the architecture shown in Fig. 7 with graph convolution
layers applied to unstructured field data is an effective model of this microstructural response.

Journal of Machine Learning for Modeling and Computing



Mesh-Based Graph Convolutional Neural Networks 17

�0

�50

�100

�150

�200

�250

�300

�350

�0 �5 �10 �15 �20

S
T
R
E
S
S

�[
M
P
a
]

STRAIN�[%]

FIG. 10: Comparison of true (lines) and predictions (points with corresponding color) for eight realizations
of the porous metal data

4.2 Efficacy of the Components of Hybrid Network

In this study we vary the three chosen architecture hyper-parameters:Nf, Nc, andNd for three
architectures: (a) a CNN, (b) the proposed dGCNN, and (c) a rGCNN endowed with angle and
volume features. Both GCNN architectures employ the standard GCN filter, with a “+” pattern
and dependent center weight illustrated in Fig. 9(f). All models are trained to the 2D CP dataset.

Figure 11 shows the correlationsC(t) and errorsε(t) over time for the three architectures
for a range of filtersNf ∈ {1, . . . , 6} for one or two convolutional layers (Nc = {1, 2}) and one
dense layer (Nd = 1). Note that two dense layers,Nd = 2, produced similar results. Generally
the correlation of all three hybrid CNN-RNNs is better earlier in the process, while the error
tends to peak early on near the end of the elastic regime wherethe response variance is highest.
Referring to Fig. 6(a), we observe that elastic-to-plastictransition occurs around 0.1%, and this
transition is apparent in Fig. 11 where the correlation appears to transition between two plateaus.
All architectures improve with more filters although there is a clearly a limit to the improvement,
which suggests a small number of relevant features. It is also apparent that more filters are needed
to capture the later plastic regime accurately than the initial elastic regime.

The simplest CNN models (fewest parameters) that have the best performance are:(4:1:1)
with 269 parameters,(3:2:1) with 271 parameters (shown in Fig. 11), and(3:1:2) with 187
parameters,(2:2:2) with 151 (not shown). This demonstrates the fungibility of the nodes in
the network. The proposed dGCNN withNc = 1 with eitherNd = {1, 2} does well in the
elastic regime forNf > 3 but achieves no greater than 0.7 correlation for plastic for all cases
with Nf < 9; however, with a second convolutional layer three filters are sufficient to achieve the
accuracy of the best CNN architectures. This indicates thatsecond nearest neighbors are required
to represent the plastic flow well using the standard GCN filter in the dGCNN architecture. This
finding will be revisited in Section 4.3. Lastly, all the variants of rGCNN with angle and volume
node features gave similar (poor) performance. The rGCNN clearly requires more features for
improvement. This finding will be expanded on in Section 4.4.

Table 1 compares the number of trainable parameters for the three types of convolutional
networks. Clearly, the additional weights in the pixel-based convolutional layers incur a cost in
complexity and training. Also, the parameter complexity ofthe dGCNN is essentially equivalent
to the rGCNN since the same filters are being used on differentgraphs and data. The data is
certainly different, with the rGCNN storing more features on a more compact adjacency than the
dGCNN; with sparse storage this is not a significant advantage for moderately sized meshes.
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FIG. 11: Architecture comparison (2D CP data): (a) CNN, (b) dGCNN: GCN applied directly to the grid,
(c) rGCNN: GCN applied to clustered/segmented data. Left panels: 1 convolutional layer, 1 dense layer;
right panels: 2 convolutional layers, 1 dense layer.

4.3 Comparison of Convolutional Filters

Motivated by the fact that a CNN can achieve good performancewith only one convolutional
layer we tried richer variants of the standard GCN filter (where the self-weight is set equal to
the neighbor weight). Using the patterns shown in Fig. 9, we explored their relative performance
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TABLE 1: Parameter counts for architectures with GCN
filters applied to 2D CP data

Architecture CNN dGCNN rGCNN
(1:1:1) 41 26 27
(2:1:1) 99 75 71
(4:1:1) 269 209 213
(6:1:1) 511 421 427
(1:2:1) 55 32 33
(2:2:1) 145 69 85
(4:2:1) 433 245 249
(6:2:1) 865 487 493

with one convolutional layer (Nc = 1) and four filters (Nf = 4). Figure 12(a) shows that patterns
+, X, O, which only have one trainable weight and have interactions with edge, vertex-only, and
edge+vertex neighbors, respectively, have comparable andless than satisfactory performance.
Even the∗ pattern, where edge and node neighbors are given separate weights (two independent
weights), has an inferior performance to the CNN (which has nine independent weights). Only
the # pattern, where the center pixel is given an independentweight from the vertex neighbors,
has performance on par with the CNN. Given this finding we endowed each of the basic patterns
{+, X, O, ∗} with an independent central weight. As shown in Fig. 12(b), this was sufficient
to improve the performance of all but the X (vertex-only neighbors) to be comparable with the
CNN. It is physically plausible that that edge neighbors have a stronger influence than vertex
neighbors and it appears that they are required for the filters to learn predictive interactions.

4.4 Selected Features

In Section 4.2 we observed that the feature-dependent rGCNNformulation had subpar perfor-
mance especially in the plastic regime that was not improvedwith a more complex GCNN com-
ponent. Figure 13 shows the performance of a(4:2:1) rGCNN network does improve with an
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FIG. 12: Filter comparison (2D CP data): (a) patterns illustrated Fig. 9 and (b) edge, vertex, and both filters
augmented with an independent center weight
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FIG. 13: Comparison of rGCNN with increasing number of features (2D CP data). Features: angle, volume,
area, surface area. Graph labels correspond to 2:{angle, volume}, 3:{angle, volume, area}, and 4:{angle,
volume, area, surface area}. Dashed lines: self-weight equal to neighbor weight; solidlines: self-weight
independent of neighbor weight.

expanded feature set. Here, in addition to the orientation angle and the volume associated with
the clusters/grains represented by the graph nodes (two total features), we added the surface area
of each grain (three total features) and the area of the grainthat is on the surface of the cell (four
total features) to the node features. The improvement with these additional features is marginal.
However, if we allow for an independent self-weight by changing the standard GCN pattern to
the # pattern, as in the previous section, the performance isdramatically improved and the im-
provement with additional features is more distinct. Although these networks have considerably
smaller adjacency matrices than dGCNN due to the clusteringof the pixels, the performance
is subpar, particularly in the plastic regime. This serves as an illustration of the difficulty of
improvement by feature selection, as opposed to deep learning. Note only elastic response was
modeled in Vlassis et al. (2020).

4.5 Data Efficiency

As a last trial with the 2D CP dataset, we investigated how efficient the best networks are
with smaller datasets. Here we compared (a)(4:1:1) CNN with 269 parameters, (b)(4:2:1)
dGCNN with the + pattern (GCNN+) and 317 parameters, and (c)(4:1:1) dGCNN with the #
pattern (GCNN#) and 249 parameters. The training set was reduced from 80% of the 12,000
realizations (9600) by a fraction that ranged from 0.01 to 1.0. The test set was a fixed 20%
(2400) of the full realizations and the results were averaged over nine trials. Figure 14 shows
that the majority of learning (improvement in accuracy) occurs by the time the training size is
approximately equal to the number of parameters. After the step-down in error (at 0.04 of the
total training set for the CNN, at 0.02 for the GCNN+, and at 0.05 GCNN#) the improvement is
relatively slow but steady. This data demonstrates that these small networks can be effective at
the prediction of the homogenized response task, Eq. (1), with much smaller datasets.

4.6 Boosting with Preconceived Features

Now that we have discovered effective adjacencies and guidance on architecture hyper-parame-
ters, we turn to using the 3D CP datasets. Motivated by the fact that some features of the
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FIG. 14: 2D CP data: data efficiency comparison for(4:1:1) CNN with 269 parameters,(4:2:1) dGCNN+
317 parameters, and(4:1:1) dGCNN# with 249 parameters. Note: 1–C(t) is being plotted in the upper
panel.

imageφ(X) have obvious bearing on the output due to physical reasoning, we boosted the
dGCNN with some of the features we employed with the solely feature-based rGCNN. The pro-
posed architecture can accommodate preselected features by simply augmenting the image/cell
microstructural fieldφ with additional channels. Figure 15 shows the effect of adding a channel
with the volume fraction of the associated grain to each pixel. Clearly there is a distinct and uni-
form benefit; however, it is somewhat marginal due to the factthat the selected feature is likely,
at least partially, redundant/correlated with the output of the trainable filters. Additional means
of augmenting with more global data, such as the average grain size or equivalently the grain
density, via inputs concatenated to the pooling layer (grayin Fig. 7) output going to the dense
layers (green in Fig. 7) would also likely prove beneficial.

4.7 Generalizability

Using CNN, GCNN+, and GCNN# with 32 filters, one or two convolutional layers, and one
dense layer, Fig. 16 shows that the proposed architecture with the # filter with an independent
central weight can outperform a corresponding CNN and GCNN+. The benefits of the more
complex(32:2:1) configuration over the other(32:1:1) appear to be most significant for the
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FIG. 16: 3D data: performance of(32:1:1) and(32:2:1) configurations of a CNN, dGCNN+, and dGCNN#
for the low- and high-variance datasets (2:GCNN+ denotes a(32:2:1) direct graph CNN using a “+” pat-
tern). (a) Low-variance and (b) high-variance.

two dGCNNs. It is also apparent that all the types of convolutional neural networks perform
better, at least in terms of correlation, on the higher variance dataset than on the lower variance
dataset.

Now focusing on the GCNN#, Fig. 17 shows the distribution of RMSE errors [Eq. (18)] is
approximately Gaussian with some outlier errors above 5% for the high-variance dataset and
3% for the low-variance dataset. A direct comparison of the true and predicted values over a
sequence of strains, shown in Fig. 18, indicates that the GCNN# overpredicts values near the
mean, which may be due it being harder to distinguish near-mean response microstructures from
those that produce extreme/outlier responses.

Following this conjecture, Fig. 19 illustrates that training on the low-variance ensemble and
testing on the high-variance ensemble (which also has a different mean) does relatively poorly
compared to the reverse. It appears that the network generalizes well to different distributions of
inputs if they are in the span of the training set, i.e., it does well at interpolation and less well at
extrapolation to potential out-of-distribution samples.
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FIG. 17: 3D data: cumulative distribution of error for various strains [(32:2:1) dGCNN#]. (a) Low-variance
and (b) high-variance.
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FIG. 18: 3D data: distribution of true (solid) and predicted (dotted) stress values for various strains
[(32:2:1) dGCNN#]. (a) Low-variance and (b) high-variance.
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5. DISCUSSION

The response of microstructures for use in multiscale simulations, structure-property investi-
gations, and uncertainty quantification can be accurately modeled with graphs. The proposed
formulation used the topology of the data discretization directly instead of a segmentation or
clustering of the image data. This aspect should have particular advantages for image data where
the segmentation is not obvious, hard to compute, or obscured by noise. Furthermore, it has a
simple implementation and avoids the need for feature engineering, but can benefit from it. The
architecture draws on both purely graph-based networks andpermutationally invariant convo-
lutional filters. We demonstrated that endowing the widely used GCN filter (Kipf and Welling,
2016a) with an independent self-weight, as suggested by thereduction of the ChebNet, can
significantly improve accuracy without adding additional layers and their parameters. The inde-
pendent self-weight allows for differencing the node data of the self and its neighbors instead
of only averaging. This can be seen as giving the filter the ability to infer edge features between
the central pixel and its neighbors. For physical problems driven by gradients this change to
the filter is important. We also found that pixel edge neighbors are more crucial for a predic-
tive model than vertex-only neighbors. Lastly, we were ableto demonstrate that small, efficient
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graph convolutional networks can be effective at the task ofpredicting the homogenized evolu-
tion of complex microstructure. This has significant applications in subgrid constitutive models
in large scale-simulations, structure-property investigations, and material uncertainty quantifica-
tion.

An apparent downside of the proposed approach is the graph and its adjacency grows with
resolution of image (number of pixels/elements). This issue is partially offset by sparse storage
of the adjacency matrix, in general, and largely ameliorated by data that is on the same dis-
cretization. In future work we will investigate low-rank approximations to the adjacency matrix
(Kanada et al., 2018; Lebedev et al., 2014; Richard et al., 2012; Savas and Dhillon, 2011; Tai
et al., 2015), dimensionality reduction techniques (Belkin and Niyogi, 2003; He and Niyogi,
2004), and the use of graph autoencoders (Hasanzadeh et al.,2019; Kipf and Welling, 2016b;
Liao et al., 2016; Salehi and Davulcu, 2019) to reduce the mesh-based graphs in-line. We are
also pursuing the larger topic of processing images with multiresolution filters (Zhang et al.,
2018), e.g., spanning the pixel to the cluster level.
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APPENDIX A. THE GRAPH CONVOLUTIONAL NETWORK

As mentioned in the Introduction, the Kipf and Welling graphconvolutional network (GCN)
(Kipf and Welling, 2016a) provides an innovative, expressive graph convolutional network built
in sequentially applied layers with local action. Here we give a brief synopsis of their develop-
ment.

The objective is to efficiently apply a graph filtergθ = diag(θ) where the parameter vector
θ hasNnodes entries. Convolution of the filtergθ and datax on a graph can be expressed as
(Hammond et al., 2011)

gθ ∗ x = Ugθ UT x, (A.1)

analogous to the classical convolution theorem. This formulation is connected to the (normal-
ized) graph LaplacianL and its spectral representation

L = I− D−1/2AD−1/2 = UΛUT , (A.2)

whereA is the binary adjacency matrix,D is the associated degree matrix,U is the matrix of
eigenvectors, andΛ is the diagonal matrix of eigenvalues. The formulation for graph convolu-
tion in Eq. (A.1), in turn, can be approximated by an expansion of Chebyshev polynomialsTk

(Defferrard et al., 2016)

gθ ∗ x =
(

UgθU
T
)

x ≈
∑

k

ϑKk=0Tk(L̃) x, (A.3)

whereL̃ = (2/λmax)L − I andλmax is the maximum eigenvalue ofL.
To this approximation Kipf and Welling (2016a) make a numberof additional simplifications.

First they approximate the maximum eigenvalueλmax ≈ 2 so that̃L = L− I, i.e., L̃ is the graph
Laplacian with added self-loops/interactions. Next, theytruncate the expansion in Eq. (A.3) at
K = 1 so that

gθ ∗ x ≈ ϑ0Ix− ϑ1D
−1/2AD−1/2x. (A.4)
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This effectively reduces the number of free parameters in the filter fromNnodesto 2. This has
the tremendous advantage of cheap and local action. The expressiveness of a network built on
these layers is controllable by the GCNN depth (number of layers). Lastly, they further collapse
the number of free parameters from 2 to 1 by settingϑ1 = −ϑ0.
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