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Predicting the evolution of a representative sample of a material with microstructure is a fundamen-
tal problem in homogenization. In this work we propose a graph convolutional neural network that
utilizes the discretized representation of the initial microstructure directly, without segmentation
or clustering. Compared to feature-based and pixel-based convolutional neural network models, the
proposed method has a number of advantages: (a) it is deep in that it does not require featurization
but can benefit from it, (b) it has a simple implementation with standard convolutional filters and
layers, (c) it works natively on unstructured and structured grid data without interpolation (un-
like pixel-based convolutional neural networks), and (d) it preserves rotational invariance like other
graph-based convolutional neural networks. We demonstrate the performance of the proposed net-
work and compare it to traditional pixel-based convolution neural network models and feature-based
graph convolutional neural networks on multiple large datasets.
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1. INTRODUCTION

Predicting the evolution of a system with a complex initialte represents a wide class of phys-
ical problems of scientific and technological interest. Irstance, simulating the evolution of
materials with complex microstructure is necessary fodjgtng the behavior of highly engi-
neered materials (Ghosh and Dimiduk, 2011; Herriott anca@020; Kraft et al., 1996; Li
etal., 2017; Stenzel et al., 2016; Yin et al., 2008). Withadgent of machine learning for phys-
ical applications and the availability of considerable exmental and high-fidelity simulation
data, models and architectures for these and related apptis have begun to arise (Frankel
et al., 2019, 2020; Pandey and Pokharel, 2020; Vlassis,&Q0). These models can be used
for a number of tasks such as subgrid accurate constitutbdeting (Frankel et al., 2019), mate-
rial design by structure property exploration (Noh et @019), and uncertainty quantification of
materials with high intrinsic variability (Khalil et al.,@1). For this work, we are interested in
predicting the evolution of the physical response of a sargplen its initial state and a history
of loading. For this class of problems, we assume the irstatle can be represented as a field
or collection of fields captured in a multispectral/multcimel image and this image is data on a
structured grid or an unstructured mesh.
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In the ever-expanding field of machine learning (ML) (Bish@@06; Goodfellow et al.,
2016; Hastie et al., 2005), there are many methods suitatieettask of supervised learning
where the objective is to represent an input-output mapdhb fidelity. Neural networks (NN)
(Goodfellow et al., 2016; Hopfield, 1982) are a particularyrsatile subcategory of machine
learning techniques suitable for regression tasks. Theyealesigned to be smooth, expressive
models of physical behavior and have been shown to be efédatreducing complex processes
to low-dimensional latent spaces (Fulton et al., 2019; lreb@arlberg, 2019). In particular, con-
volutional neural networks (CNNs) (Albawi et al., 2017; LatCet al., 1989; O’Shea and Nash,
2015; Qin et al., 2018) are an efficient version of fully coctee networks applied to image
data. Their main advantage is the reduction of the weightespgeded to encode images to a
manageable size by exploiting spatial correlation, logadind similarity with a compact kernel
filter. They have been spectacularly successful in a vaoiEityage and time series applications
(Krizhevsky et al., 2012; LeCun et al., 1998; Liu et al., 2Dp17

Graph convolutional neural networks (GCNNSs) (Bronsteialet2017; Bruna et al., 2013)
can be seen as counterparts to CNNs which operate on topallygielated, as opposed to spa-
tially or temporally related, data. Bruna et al. (2013) gpui@aed that many of the properties that
make CNNs effective on gridded data could be translatedaphlgbased data, such as data on
unstructured meshes. They developed both local (e.g.iqg@nd spectral/global (e.g., convo-
lution in the Fourier domain) operations on graph data. Thage the connection with Fourier
bases through the graph Laplacian of a binary adjacencyxatiranslate the convolution op-
eration to graphs. In another arena, graph wavelets/gligpalgprocessing, some of the graph
convolution developments were preceded by Hammond et@l1(2wvho developed the mathe-
matics of spectral analysis and filtering on the more gerwenatext of kernel-weighted graphs.
In order to surmount the global and expensive nature of apgplfiiters in the spectral domain,
where an eigen-decomposition is required, Defferrard .e2@116) (ChebNet) introduced spa-
tially compact polynomial filters. In particular, they apgimated the action of a general spec-
tral filter with a truncated Chebychev expansion of the erglre matrix of the graph Laplacian,
leveraging the fact that repeated application of thesadilfe times) leads td:-hop diffusion
of information. Kipf and Welling (2016a) took these devetognts to their logical conclusion
with the graph convolutional network (GCN). They truncatieel Chebychev expansion to first
order and relied on deep/multilayer networks to build egpree representations. Appendix A
provides a brief synopsis of the GCN which we base our dewvedoyts on. For a more complete
overview of GCNNs see reviews by Wu et al. (2020), Zhang €28R0), and Zhou et al. (2020).
Note that related kernel-based NN methods, such as the vidiask et al. (2020, 2019), exist
and have been shown to be effective in physical applicatials®, Bronstein et al. (2017) pro-
vides an insightful perspective on applications of deemieg to non-Euclidean data, graphs,
and manifolds as well as the relevant mathematics.

One of the issues with using convolutional NNs for physicaljfems is the need to preserve
fundamental physical relationships such as frame indiffee, where scalars are unchanged (in-
variant) to rotational changes in observer and tensoriahtjties rotate in a corresponding way
(equivariance) with rotation of the observation coordinfahme. The advantages of preserving
these spatial symmetries in filter based NNs was recogniady en (Rowley et al., 1998). By
construction CNNs embed shift/translation invariance ietevery local neighborhood is pro-
cessed in a similar manner. Traditional convolutionalfilteperate strictly on structured grids
of pixelated images and generally do not preserve rotdtgymametries but provide a richer set
of filters than methods that do. Numerous efforts have beealertteendow CNNs with rotational
invariance. Dieleman et al. (2016) augmented the layersGN to add rotations of the image
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by 7 /4 and inversions. Cohen and Welling (2016) outlined the eratitics whereby a convolu-
tional network will be equivariant with respect to any groinzluding rotation and reflections.
Worrall et al. (2017) developed filters based on circularmmarics. Chidester et al. (2018) used
a discrete Fourier transform to embed rotational invaedmg filter augmentation. Using con-
cepts from abstract algebra, Kondor and Trivedi (2018) @dawat convolutional structure is a
necessary and sufficient condition for equivariance to ttiea of a compact symmetry group.
This finding serves as a requirement for CNN to be equivarRatently, Finzi et al. (2020)
provided a significant extension of Cohen and Welling'stiresnt of small, discrete symmetry
groups to continuous (Lie) groups, e.g., rotations in thdmeensions, the special orthogonal
group SO(3). In contrast to pixel-based CNNs, the existiraph-based filters can operate on
unstructured spatial data by use of user-defined neightrimatons but lose some spatial infor-
mation in the process. Furthermore, graph-based conwaohitnetworks can have an inherent
rotational invariance, assuming the node data is invadgguoivariant, since the representation
has been lifted out of its spatial embedding.

Currently, there are many applications of pixel-based CiNshysics and mechanics prob-
lems that have data on a structured grid. Some of the earl feoused on classification and
simple property prediction. Chowdhury et al. (2016) usedNdNGo classify microstructures.
Lubbers et al. (2017) developed a CNN-based method forrinfglow-dimensional microstruc-
ture representations and used the model for microstrugemeration. DeCost et al. (2017) also
applied CNNs to microstructure representations and useantbdel to connect processing to
structure. Contemporaneous with these developments,dehdl. (2017) used a CNN to pre-
dict ionic conductivity based on microstructure. Many pedaions have followed these initial
applications, some have targeted evolution predictiokstaSrankel and collaborators devised
a hybrid between a CNN and recurrent NN (RNN) network to prietie elastic-plastic stress
response of polycrystalline samples (Frankel et al., 2@1@) have used a convolutional long
short-term memory architecture (convLSTM) (Shi et al.,20Which integrates CNN and RNN
aspects into a single architecture, to predict the evaludfdhe stress field (Frankel et al., 2020).
The latter work (Frankel et al., 2020) was based on convLSEMvark of Shi et al. (2015),
which was developed for atmospheric predictions and pesva framework for representing
the solutions of time-dependent partial differential etpres. On the other hand, we are aware
of only a few applications of GCNNs to physics or mechanicslate. Vlassis et al. (2020)
employed a feature-based graph neural network to modelld#sticeinteraction of grains in
polycrystalline samples using an adaptation of the CNN-Rié¢Nvork in Frankel et al. (2019).
Chen et al. (2020) employed a GCNN trained to sparse anduststed diffusion data to model
human tissue.

In contrast to these approaches, the proposed graph-basealtional neural network pro-
cesses the structured or unstructured microstructuraesidirectly and in an invariant manner.
The adjacency matrix, which conveys/defines neighbors patied information, is based on the
topology of the image data itself. The formulation does eojuire an obvious segmentation of
the microstructure, which may be occluded by noise in ret.ddost importantly, it does not
require featurization of the multichannel/hyperspedtrelge data (Bessa et al., 2017; Mozaffar
et al., 2019). Nevertheless, as we will show, it can benefihfobvious features but no feature
engineering is needed to obtain good accuracy. The maimibotions of the work are a gen-
eralization of graph/pixel CNNs for predicting homogenizesponse of samples with complex
microstructure and a demonstrative comparison of perfoomaelative to existing methods.

In Section 2 we describe the physical problem, which is a lggnization of physical re-
sponse suitable for subgrid/multiscale applicationsrikeaet al., 2019; Jones et al., 2018). In
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particular we apply the methods to homogenization of théutiem of stress of a sample volume
where the internal state is determined by microstructur&dction 3 we describe the proposed
neural network architecture and relate it to traditionalNG\Nand feature-engineered GCNNSs.
In Section 4 we focus on comparing the performance of pizskeld convolutional neural net-
work (CNN), a feature-based “reduced” graph convolutior@lral network (rGCNN), and the
proposed “direct” graph-based convolutional neural nekWfldGCNN) which operates directly
on structured or unstructured image data like a CNN withbetrteed for featurization or seg-
mentation required by the rGCNN. To assess the performafitese models, we employ two
exemplars of the homogenization problem: (a) the prediabicthe stress evolution in a porous
metal and (b) the prediction of the stress evolution in a guistalline material. With these
physical problems we created four datasets using (a) amdasef three-dimensional (3D)
realizations of the porous metal, (b) an ensemble of twoedisional (2D) realizations of poly-
crystals, (c) a 3D ensemble with low variance in the graiesiand (d) a 3D ensemble with high
variance in the grain sizes, all of which are subjected tmsite deformation process. The first
dataset is used to demonstrate the efficacy of the proposgt-b@sed GCNNs on unstructured
meshes; the remainder are used to compare CNNs to GCNNsuoitusad meshes. We exploit
the lower computational cost of the 2D polycrystalline datan a deeper exploration of vari-
ants and hyper-parameters than would be possible with théa®® In Section 5 we summarize
the findings of exploring data and parameter efficiencied)itacture variations, and adjacency
manipulation, and discuss ongoing work.

2. PHYSICAL PROBLEM

Predicting the physical response of a sample given a conipiéd state is representative of a
general class of problems in homogenization (Mura, 2013n&teNasser and Hori, 2013). In
particular, we focus on the prediction of the evolution ¢ #olume average of stressin a
representative volumeg :

5(t) = 3 [ o (elt). 9(X)) aX. )

given a microstructural fieleb(X) observed at timé = 0 and a time-dependent, homogeneous
loading determined by the imposed straift). This class of problems is the basis for multiscale
models (Trovalusci et al., 2009), material structure ojgation (Le et al., 2012), and material
variability and uncertainty quantification (Khalil et a2021). The microstructural fielg (X)
characterizes location-dependent inhomogeneity thatanfles the state of the material, where
X is the position vector in the reference configuration of thmgle. Examples o include
phase in multiphase composites (Bouquerel et al., 20083tielmodulus in a material with
inclusions (Roduit et al., 2009) or pores (Heckman et aR@0and the local defect density in a
defective materialGekada et al., 2007).

Rotational equivariance requires

QE ot 9) = - [ 0(QE e, QE $(X) dX. @)

whereQ is an orthogonal tensor (rotation) abdlis the Kronecker product, which is defined
asQ X A = QAQT = > AijQe; ® Qe; for a second order tensok, where® is the
tensor product. In effect this is a requirement that rotati the inputs byQ must lead to a
corresponding rotation of the output . It has fundamental consequences for the form that
the functiono (e, ¢) is allowed to take (Jones et al., 2018; Silhavy, 2013).
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2.1 Exemplars

We employ two exemplars to test and demonstrate performafidee NN architectures: (a) a
porous metal and (b) a polycrystalline metal. The mech&nésponse in both systems is com-
plex. They undergo an elastic-to-plastic transition withding and heterogeneous deformation
due to the microstructure. For simplicity and data stonagetory considerations we focus on
the primary componeni;(t), of the volume averaged stressor both exemplars. Each dataset
was created with standard, well-documented software gmskéGroeber and Jackson, 2019;
Salinger et al., 2016; Stewart and Edwards, 2020).

2.1.1 Porous Plasticity

In the porous metal exemplad)(X) is the local density field withp(X) = 0 in the pores
and equal to the density of the metal elsewhere, which we alimento one. Rizzi et al. (2018)
describes a similar material model. Here aluminum was ahase representative material.

The metal response follows from a widely employ&delastic-plastic model (Lubliner,
2008) where the stresis given by a linear elastic rule:

S=C:E.. Q)

Here “" is a double inner product that allows the fourth ardlastic modulus tensdt to
map the elastic straill, to the stress$S. Note thatE, is distinct from the applied straia(¢)
driving the evolution of the sample. For an isotropic matdike aluminum the components of
C reduce to

E v 1
ikl = 5;;0 = (8ix041 + 818 4
[C]ljkl (1 T V) ((1 — ZV) 15Okl + 2( kO3l + 041 jk))a ( )
which depends only on Young’s moduléis= 59.2 GPa and Poisson’s ratio= 0.33.

The plastic flow is derived from the von Mises yield condition

owm(S) — o(ep) <0, (5)

which limits the elastic regime to a convex region in strgxece and offsets the elastic stréip
from the total strain. Here,m = /(3/2)s - s is the von Mises stress whese= S — tr(S)I is
the deviatoric part 08, ande, is the equivalent plastic which is a measure of the accumdilat
plastic strain computed from the plastic velocity gradikpt The yield limit & is given by a
Voce hardening law

0 =Y — Hexp(—oaep), (6)

with the following parameters: initial yield™ = 200.0 MPa, hardening/ = 163.6 MPa, and
saturation exponent = 73.3.

Realizations were created by a random placement scheméefisal voids in the sample
cube with constraints on pore overlap with other pores aadg#mple boundary (Brown et al.,
2018). This process created unit cells with mean porosi9 8.0.03 following a beta distribu-
tion and at most 20 pores per cell. The cubic samples wereeoartter of 1.5 mriwith pore
radiusa 150 um. Pores in each of the 1121 realizations we created wer&ikpineshed and
resulted in unstructured discretizations with 14,640 tb,260 elements.

Each realization was subjected to quasi-static uniaxredita up to 20% engineering strain
with minimal Dirichlet boundary conditions (no lateral atraints, uniform displacement on the
ends). These simulations were performed with Sierra (Steaval Edwards, 2020). From these
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simulations we extracted microstructupg X), applied straire(¢), and volume-averaged stress
o (t) data to demonstrate the efficacy of mesh-based GCNNs inoBetti

2.1.2 Crystal Plasticity

Our second exemplar of the homogenization problem, Eq.udgd a crystal plasticity (CP)
constitutive model whereb (X) is a field of crystal orientations associated with grainghédigh
each grain has a relatively simple response, the collebtavior is difficult to predict without
a detailed simulation since each grain influences its neighfi-rankel et al., 2019). For this
exemplar, steel was chosen as a representative material.

The response of each crystal follows an elastic-viscoplasinstitutive relation based on
well-known mesoscale models (Bishop and Hill, 1951a,b; 8w 2000; Kroner, 1961; Man-
del, 1965; Roters et al., 2010; Taylor, 1934). For the ctyststicity, we employed the same
linear stress model, Eqg. (3), as in the porous metal exerafilait with a different elastic mod-
ulus tensorC. In this case ferrous (face centered) cubic symmetry(fovas assumed, and the
independent components of the elastic modulus te@seere those of steell’;1, C1o, Cyq =
{2046, 137.7,126.2} GPa. The overall response reflects the anisotropy of eadtr i@vever,
the response of polycrystals with random orientatigriX) was determined by the collective
response, which tends to isotropy with large sample siresath crystal, plastic flow

Lp = ZW'/ocSoc R N, (7)
o

can occur on any of the 12 face-centered cubic slip planesrenh, is the plastic velocity
gradientyy 4 is the slip rates, is the slip direction, and,, is the slip plane normal. We employed
a common power-law form for the slip rate relation,

m—1
Tx

1’0( = 1'/0 Ta, (8)

x

driven by the shear stresg resolved on slip system. The reference slip rate was chosen to be
Yo =1.0 s71, the rate sensitivity exponent was = 20, the initial slip is set to zero, and the slip
resistance, was given the initial valug, = 122.0 MPa (Jones et al., 2018). The slip resistance
evolved according to (Kocks, 1976; Mecking et al., 1976)

Joa = (H - Rdgoc) Z chla 9)

where the hardening modulus was chosen té/be 3550 MPa and the recovery constant was
R4 = 2.9. Both Egs. (8) and (9) are integrated with standard intptigimerical integrators as
part of a global equilibrium solution algorithm. See Jonteal &2018) for additional details.

For this exemplar, we created multiple setq ¢f(X), e(¢); o(¢)} data to train and compare
the NN models described in the next section: (a) a 2D datasetisting of 12,000 realizations
(Frankel et al., 2019), (b) a 3D dataset consisting of 10j@@lizations with low variance in
the grain sizes, and (c) a corresponding 10,000 realiz&fibdataset with high variance in the
number of grains per realization. The nominal sample lefgjtbach realization was dm. The
variance in the grain sizes is directly related to the varidtgrain topologies in the particular
ensemble; this aspect will be used in explorations desttiibb&ection 4.
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Although the GCNN method can be applied to unstructuredsgmt complex geometries of
different sizes, the CNN cannot without interpolation oms&oother intermediate data process-
ing. In this exemplar we chose structured computationalsgia facilitate direct comparison of
pixel- and graph-based methods. The 2D dataset was computed2 x 32 structured FE mesh
and output over 31 time steps (max strain 0.3%); and the twGBMDatasets used a 25 x 25 x 25
mesh and output over 51 steps (max strain 0.4%). Each palgdmealization was subjected to
quasi-static uniaxial tension at a constant engineerirajrstate ofé = 1 s~ with minimal
Dirichlet boundary conditions. The time evolution of eagistem was observed over a limited
number of time-steps that covered the physics of interestransition from elastic to full plastic
flow.

Realizations of the microstructurp(X) consisted of a crystal orientation vector field that
encodes the rotation of a crystal in a reference orientdtiathat in the polycrystal (Frankel
et al., 2019). The orientation vectdr is the unit eigenvectgp of the rotation tensoR,, which
takesC from a canonical orientation to that of a particular grRifiX C, scaled by the rotation
angled around that axis

¢ = 0p such thatRp = p and||p|| =1, (10)

where® can be obtained from the nonunitary eigenvalueRoRefer to Frankel et al. (2019)
for more details. The computational cell for each real@atis a cube, which is partitioned
into subregions, called grains, with distingt(X). The subregions evoke a natural topology
for a grain-based graph (Vlassis et al., 2020). All polytaysealizations where created with
Dream3D (Groeber and Jackson, 2019) using spatial cdmesatio obtain a reasonable number
of grains and angle distribution functions that gave a uniftexture. The 2D simulations were
run with Albany (Salinger et al., 2016), and the 3D simulasiavere run with Sierra (Stewart
and Edwards, 2020). See Jones et al. (2018) and Franke(2048, 2020) for related efforts.

2.2 System Characterization and Response

In each exemplar, the nonlinear plasticity model and hgmeous microstructure evoke a com-
plex response to loading(t). The local stress fields reflect internal inhomogeneiti¢iseapores

or the grain boundaries, as characterized§X ), and display large gradients at elastic-plastic
transitions. Spatial averaging to extract the system mespo(t) does some smoothing of the
evolution, but the range of microstructures evokes a 8igtion of responses. The behavior is
generally similar across the ensemble of realizationsyartiations are difficult to predict from
simple statistics such as mean grain or pore size.

2.2.1 Porous Plasticity

Figure 1 shows the distribution of sample porosities ovegr@semble of 1121 realizations. The
distribution follows the target beta distribution with ©.hean porosity and a standard deviation
of 0.03.

Due to variation in the number of voids, their size, and th@icement relative to each
other and inside the geometry, the response varies as tke gecrease the material stiffness
and neighboring pores increase local stress concentsafidte three representative realizations
shown in Fig. 2 at the final strain of 20% display significartenegeneities in their deformation
due to the dense packing of large pores. The middle realizaith particular, clearly shows a
plastic localization plane due to a collection of pores iegdio a weak section in the sample. The
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DISTRIBUTION

0 0.05 0.1 0.15 0.2
POROSITY

FIG. 1: Porosity distribution

FIG. 2: Pore realizations showing exterior and interior surfacehvag 20% strain colored by tensile stress
(blue: < 0, red: 700 MPa). The original, undeformed configuratiorugioed.

stress field for each of the samples displays correspondiagje local variations and gradients.
The average stress historigs;(t) }, shown in Fig. 3 display a variation of 22%. After rescaling
by a mixture rule based on the solid fraction, 10% variatiemains. This indicates that the
details of the pore configurations control a significant jporbf the plastic response.

2.2.2 Crystal Plasticity

The CP microstructure also evokes a complex and evolviegsfield, as Figs. 4(b)—4(d) illus-
trates.

Descriptive statistics of the 2D and 3D ensembles are showfig. 5. The distribution
of grain densities of each realization (the reciprocal &f ttumber of grains in the particular

350
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STRAIN [%]
FIG. 3: Porous elastic-plastic stress response. Color distihgaithe 64 realizations shown.

STRESS [MPal
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FIG. 4: Polycrystal orientation colored by (a) the first Euler angl® elastic stress state, (c) transition
stress state, and (d) plastic stress state, colorexi pwith the same scale for all three stress state panels
(blue: 0 MPa, red: 250 MPa)
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FIG. 5: Comparative statistics for 2D and 3D high- and low-variaG&ensembles. Grain densities per
realization and volumes per grain have been referenceditaelhvolumes in 2D and 3D, respectively.

realization) is relatively broad and long-tailed in thelirigariance 3D dataset compared to that
of the low-variance 3D dataset. The grain distribution & 2D dataset has more compact sup-
port relative to the high-varance 3D ensemble but is sigaritiy wider than the low-varance
3D ensemble, thus representing an intermediate distoibulihe distribution of the individual
grain volumes over all realizations show similar trendse Peak width of the high-variance 3D
dataset, however, is relatively narrow compared to thedaviance 3D dataset. The 2D data has
a pronounced tail and indistinct peak which indicates a wa®@nce in grain sizes across the
ensemble. Figure 6 illustrates how the variance of the sypiX) is reflected in the variance
of the outputo(t).

These datasets are particularly challenging to repressative to existing work, since each
realization had a distinct topology/grain assignment axtltre. Previous work (Frankel et al.,
2019; Vlassis et al., 2020) employed a limited number ofrgtapologies (the tiling of the do-
main by distinct subregions) with unique texture assigriséhe specific orientations assigned
to the grains). Specifically, here each dataset had on ther afd10,000 unique topologies,
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FIG. 6: CP stress response for (a) 2D, (b) 3D low grain size variaaroe(c) 3D high-variance ensembles.
Color distinguishes the 64 realizations shown.

whereas in Frankel et al. (2019) and Vlassis et al. (2020kthere on the order of 10-100
topologies. Itis plausible, in a small dataset, when thelenof convolutional filters approaches
the number of microstructural topologies, a simpler leagrprocess results since each filter can
specialize to a particular topology. In this study this is the case since each of the*&amples
had both a unique grain structure and grain orientatiortte). Clearly, with datasets of this
size and variety, the filters must learn generalized, ptizdifeatures.

3. NEURAL NETWORK ARCHITECTURE

The overall neural network (NN) architecture to model thelgem of interest Eq. (1) is analo-
gous to the hybrid network from our previous work (Frankedlet2019, 2020), which was also
used in Vlassis et al. (2020). It is illustrated in Fig. 7 andsists of two main components: (a)
a convolutional neural network (CNN or GCNN, orange) to gsscthe spatially complex initial
stated (X) and (b) a recurrent neural network (RNN, blue) to evolve thantity of interest
o(t) given the time-dependent loadirgt) as an input. As can be seen in Fig. 7, the output
features of the CNN become inputs to the RNN along with thetdependent loading. This
hybrid NN has the potential to be quite complex with many mymerameters, e.g., a different
kernel width for each convolution layer and different numbienodes for each dense layer.

In this work we simplify the NN architecture from that we picwsly employed to facilitate
exploration and comparison of CNN and GCNN approaches. i§hist particularly constrain-
ing since there are redundancies in the approximation poivsuch a network. We determine
the shape of the network diagrammed in Fig. 7 with three hppeameters: (a) the number of
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filters, V¢, applied in parallel to node data; (b) the number of convohal layers/V.; and (c) the
number of densely connected layelg, post-convolution used in the reduction of image to (hid-
den) features. In the following we will use the abbreviatidd: N.: Ny) to refer to architectures
defined by these three parameters, for instgdc1) is a network with 4 filters, 2 convolutional
layers, and 1 dense layer. Note the global (average) poatiegthe convolutional layers reduces
the output of the image processing CNNX® outputs and hence determines the width of the
entire convolutional component including the densely emted layers. In our previous work
(Frankel et al., 2019) we used an encoder for this task. Eifuliustrates the details of a typical
convolutional component in the overall architecture @eliin Fig. 7). A batch normalization
layer (not shown) is inserted between each convolutioyarlgo aid in conditioning the output
and training (Bjorck et al., 2018). To facilitate comparisaf the CNN and GCNN approaches
we fix the kernel width of pixel convolutional layer to 3 to neakn analog of a graph where
connections are nearest neighbors for the physical praoblée particular RNN we employ is
the well-known long-short-term memory unit (LSTM) (Hochiee and Schmidhuber, 1997). In
preliminary studies we also tried another standard RNNgtited recurrent unit (GRU) (Cho
et al., 2014), which achieved marginally worse accuracywanage. The RNN usedinh acti-
vations and all other layers employ rectifying linear uiReLUs) for their nonlinear activation
functions. We also triedanh activations for the entire network, but that configuratitroice
performed relatively poorly (Glorot and Bengio, 2010; Glpet al., 2011). Lastly we apply the
standard technique of using a linear mixing layer (no nadiity, only affine transformation)
just prior to the output of interest.

The primary variation in the networks we explore is in thewmutional unit (yellow in
the schematic Fig. 7 and shown in detail in Fig. 8) and in paldir the construction of the
convolution filter, which is our focus.

3.1 Proposed Graph Structure

At the level of digitized data in a pixel-based CNN, the mgtractural input is values ap at
pixels (or a cell or an element) that are addressed in a gisd-fashion. In general the field
¢ (X) can be represented as a pixelized image on a structuredrgsitan unstructured mesh.
For a graph representation, such as that used in Vlassis(@020), the reduction of a clearly
segmentable microstructure, such as that illustratedgn4{a), leads to nodes representing ho-
mogeneous regions and graph edges encoding adjacencyebeteggons. This reduction loses
spatial information such as the shape of the regions in thstarling/aggregation to nodes. Hence,
that framework typically requires enrichment of the nodeadaby featurization, i.e., picking
measures/statistics that quantify the information losh@reduction. In that approach, the num-
ber of nodesVyogesiS variable and equal to the number of regions in the pagicdmple. In that
context, and in general, the node data number of noded/qqesby number of input feature’;
derived fromd (X). Some features are obvious, such as the valup of the clustered region
represented by the node and the volume of the region, andsathe not. It is easy to see that
these features can result from preconceived filters andeclng operations applied to image
$(X). We will refer to this feature-based, reduced graph cortiaal network as a rGCNN.

To avoid the nebulous task of featurization, we proposeectigraph CNN (dGCNN) where
x is identically ¢ (X) at the cell/element centers of the computational grid bttefteed (in an
arbitrary order) to fit in the graph convolution paradigmeTdraph convolutions are permu-
tationally invariant, so ordering does not affect outputthie proposed networkogesis the
number of pixels or unstructured elements in the image, la@@dlges are derived directly from
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the mesh topology, i.e., element/pixel neighbors are graighbors. This approach has qualita-
tive advantage of being a graph-based representationhwais intrinsic invariance properties,

while working directly on the structured or unstructuredadé (X), not a segmented or clus-

tered version of it. This representation does not preclhdeise of derived, informative features
to boost accuracy by adding themxoas we will demonstrate.

3.2 Comparison of Pixel- and Graph-Based Convolution

To understand the difference between a pixel-based anga-pased convolution, let us exam-
ine a single convolutional filter. Note that the proposeth@ecture shown in Fig. 7 and Fig. 8 has
several filters. In general, a convolutional filter has tasile weightd/V and biash. The weight
matrix W effects an affine transform by matrix multiplication thatxes input features into
output featureg, andb provides an offset to tune activation of the subsequentitieg nonlin-
earityy = f(x). In a traditional grid/pixel convolution (CNN), the nodeafares are addressable
by grid index, for instance in 2D:

y(’L]) = Z W(k’,l’)x(i+k’,j+l’) + b, (11)
G
loading €(t;) microstructure ¢(xy)
e 7
| convolution |
I
| convolution |
I
| | |
| pooling |
| |
| dense |
I
- J
s N
I recurrent I
T
I recurrent I
| ' |
| | v
N\ J

mixing

stress o (t;)

FIG. 7: Hybrid neural network with CNN (yellow/lighter) and RNN (i#/darker) components to transform
the inputs (red): spatially dependep{X) microstructure and time-dependent loading his(), to the
outputo(d, t) (cyan/bottom)
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Input: node data x
GraphConvolution(A©®, N; = 4, f = ReLU) | GraphConvolution(A, Ny = 4,f = ReLU)
Concatenate
GraphConvolution(A©®, Ny = 4, = ReLU) | GraphConvolution(A®), N; = 4,f = ReLU)
Concatenate

Pooling(GlobalAverage)

Dense(n = N, f = ReLU)

Dense(n = N¢,f = None)
Output: features

FIG. 8: A (4:2:2) convolutional unitA® s the adjacency matrix for theh neighbors (0 is self)}Vt is
the number of filters, and is the activation function for the layer. Note the last delaser is linear (no
nonlinear activation function).

wherei, j are indices over the pixelated image/discretized field, /dnt are indices over the
convolution/filter which iSVyemei X Nkemel IN Size, With Nyemel < Nnogesbeing the kernel width.
To see the similarities with graph convolution we recass$ ttwnvolutional multiplication in
Eq. (11) by mapping botty, j) and(k’,!’) to single indiced and L by imposing a fixed, arbi-
trary ordering across the kernél (refer to Fig. 9). For the flattened inputthe corresponding

outputy is
J Lk

where multiplication by a matriA(X") provides a masking operation translating the global in-
dices to local dependencies. Hexe<") is a globalNpoges X Nnodes@djacency matrix for each
entry K’ in the convolutional kernel (i.e., each pixel under the ffikernel is treated uniquely);

andA(IIj/) = 1if [ andJ are neighbors (by some definition, e.g., shared face, shmee in
the computational mesh or distance) and 0 otherwise. Theitilefi of neighbors determines the
direct interactions, in rough analogy to choosing the Kenmgth in a pixel-based convolutional
filter.

Likewise, for a graph convolutional network (GCN) layer pKiand Welling, 2016a), the
convolution operation takes the form:

yr =Y WA+, (13)
7

xj + br, (12)

where the adjacendy plays the same masking/connectivity role®d&”) and an ordering of the
input datax is necessary to associate the indi¢eend J with particular cells. AgaiA;; = 1

if 7 andJ are neighbors by some definition and 0 otherwise. Based odeheation of the
GCN (refer to Appendix A), self-loops are added such thgt = 1. For each filter there are
two trainable parameterd; andb, versusk? for a pixel-based CNN filter, whereis the spatial
dimension and is the kernel width. These graph-based filters have perimatdtinvariance by
construction since all neighbors have the same weight. @heglso typically normalized by the
number of neighbors, for instance in a GCN, the binary adjegenatrixA is normalized by the
degree matridD;; = >, Ard1;

A =D Y2AD" Y2 (14)

to convey average neighborhood information and improvetmaitioning ofA.
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FIG. 9: Convolutionalfilters in 2D: (a) pixel: CNN where all neighisdnave independent weights (denoted
by colors); and alternative GCN-like filters that presemreariant outputs: (b¥: edges and nodes have
separate weights; (c) #: all edges have a single weight; {dJ)l@eighbors have a single weight; (e) X: all
node neighbors have single weight; (f) +: all edges havegissimeight. Edge neighbors share an edge/face,
whereas node neighbors only share a vertex/node. Colarabie, gray: determined by trainable, white:
not used.

Finally, in both the pixel and graph convolutional cases etivation functionf is applied
element-wise to the resulting node data

<= f(y(x)), (15)

to obtain the inpuk' to the next layer from that of the present layer
Clearly the adjacenck plays a crucial role in convolution by defining what congétuinflu-

ence between nodes. In physical problems typically inflaéadocal and decays with distance.
For some applications, such as electrostatic interactitvsinteractions do not decay quickly
with distance and hence are long-ranged (Li et al., 2020%tMther applications have relatively
short-ranged influence, such as contact/interface irtterec As mentioned, the source field for
the microstructure is a pixelated image grid or computationesh which has its own obvi-
ous topology and neighbors. In the proposed direct graphefineladjacency by the pixel/cell
neighbors of the image grid/mesh, not by the dpt&) on it. When reduced to a graph in this
fashion, where nodes are the pixels/cells, the only topoddy distinct nearest neighbors are (a)
those that share an edge with the particular cell or (b) ongréex. In CNNs compact kernels
are preferable since they limit the number of parametertsrtbed to be trained. For GCNNSs,
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and in particular the GCN, neighbors are not distinct andbehere is only a single weight. As
in CNNs, longer range influence can be captured by multiglerapplied in sequence.

Kipf and Welling (2016a) GCN is well-known to be an effectiyenspectral) convolutional
filter. By comparing it to standard CNNs we employed in ourpres work (Frankel et al., 2019)
we devised a few variants based on manipulating the nodeeatj@s and associated weights.
Figure 9 shows the variety of rotationally and permutatilyriavariant filters we explored. Note
these filters assume that the neighbors are at equival¢ahdes from the node at the center and
the cells are of comparable sizes. We generalize this tyfittesfto multiple adjacenciea (X"
with their associated weighW/ i via:

YI:Z

J

S WAl >1 X (16)
Kl

The pixel-based filter in a standard CNN treats every pixéhékernel independently [refer
to Fig. 9(a)] and retains a sense of how pixels located velati the central pixel. This richness
has the side effect of not satisfying the symmetries reduiseinvariance. To elaborate with an
illustration, if the data{ ¢, €; o'} is rotated byr/2 around a coordinate axis, the data at pixels
are uniquely mapped by to new indices without interpolatiott = Qx. In this simple case the
linear transformation

Qr=ay [szfAY;”
J K’

*

QXJa (17)

x; # > [Z W ALY
J K’

in Eq. (12) applied to the inputs; = ¢ (X ;) will not produce a rotated output since image
x = ¢(X) rotates but the filtefw - A5")] for the K’th adjacency does not. A graph treat-
ment, unlike a pixel convolution, effectively allows thamsformatiorQ to commute with the
adjacencyQA(X)x = [A(K)]*Qx, since the node association of the graph adjacency is in-
variant to spatial transformations. Refer to Kondor andddi (2018) and Finzi et al. (2020)
for a more formal treatment. The equivariance problem ram#&r the action of the weights
WK’ B

Permutational invariance of the weights is one means ofirgplihis issue. Strictly speak-
ing, the weights of all of the neighbors of the central pixed eequired to be identical for per-
mutational invariance (and for invariance with respectruteary rotations). We implemented
filter variants where edge and vertex weights are used axely$Fig. 9(f) uses edge neighbors
whereas Fig. 9(e) employs only node neighbors] or givengeddent weights, such as the'“
pattern in Fig. 9(b). These filters are in contrast to the CNidrfishown in Fig. 9(a), which
has no inherent symmetries. Note there is some evidenceaithasufficient data CNNs learn
rotational invariance (Quiroga et al., 2018) but the bes@fita smaller parameter space and a
compact representation that satisfies this constrainttlgxa® clear. In the GCN, as designed
by Kipf and Welling (2016a), the weight of the center [showngray in Fig. 9(f) vs. colored
in Fig. 9(c)] was chosen to be the same as the neighbors tef&ppendix A). In this work
we also tried variants where the self-weight is independétite neighbor weight [Fig. 9(c) vs.
Fig. 9(f)]. As in Eq. (12), each independent, trainable Wely - can be associated with a dif-
ferent predetermined, binary adjacency ma&iX"), or, equivalently, the weighted adjacency

Yok AS,I;/)WK, can be considered the trainable entity.
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4. RESULTS

To establish the efficacy of the proposed GCNN-RNN archirecapplied directly to unstruc-
tured mesh data without featurization we demonstrate ittopeance on the porous material
dataset. Since hyper-parameter optimization and othepuatationally intensive tasks are more
feasible with the 2D dataset, we use it explore a variety gfeimparameters and architecture
choices with the 2D dataset. After determining what grapkeld filters perform well and have
good accuracy per parameter and dataset size, we demeribgiroposed architecture on the
two 3D CP datasets.

The data was conditioned to aid training. The input dpt&X) and e(¢) were normalized
by their maximum values since both had lower bounds of zehe. dutput datar(¢,, ) was
transformed to the differenc&c(¢,,t) between the data(d,,t) and its mean trendo) =
(1/N)>,0(d,,t) (N is the number of realizations) and normalized by the stahdaviation
of o(,, t) over timet. We chose to train the model respoiége ., ) to the difference from the
mean trend to emphasize the variation in response betwemostiucturesp,. We evaluated
the performance of each of the convolutional networks prilsnavith the root mean squared
error (RMSE)

cft) = @¢Z(&<¢a,t> (1) (19)

relative to the maximuno over the dataset, and the (Pearson) correlation coefficient

C(t) — Za A6(¢a’t) A()'(d)a,t)
\/Za Aa—(d)a? t)z Za Ao-(q)aa t)z
of the normalized data. In Egs. (18) and (19) the sum is oVeealizationsz in the test set, and
the NN model response is denoteddds ,, t). We used a 70/10/20 train/validation/test split for
the smaller porous material dataset and a 80/10/10 splihéolarger CP datasets.
Recall the abbreviated architecture naming conventi¥nN¢: Ng), which will be used
throughout this section.

(19)

4.1 Demonstration on Unstructured Mesh Data

We used the smaller 3D porous material dataset to demomshrat GCNNs applied directly
to unstructured mesh data are effective at representingenized material behavior. For this
study we used a (32:4:2) convolutional unit with “O” typedil that treat all nearest neighbor
elements equally. The field daga(X), in this case, is the binary density field (0: void, 1: metal)
on the native unstructured computational mesh. Since eiearal systems sizes varied across
the ensemble, we augmentédX) with the volumes. The stress responge) is composed of
400 tensile loading steps to reach 20% strain. Since eatdiaatan has a different mesh and
each adjacency matrix is large (on the order of-l@P rows and columns) albeit sparse, we
trained the network by evaluating and updating the netwagights one sample at a time, i.e., a
batch size of 1.

The predictions for eight randomly selected trajectoriessn in Fig. 10 are smooth and dis-
play minimal errors that are fairly uniform across the etiolu. The initial elastic regime is well
captured, as is the ultimate (peak) strength and subseplastic flow. Over the entire test set
of 224 samples, the normalized mean RMSE was 0.00409 wifl082Dstandard deviation, and
the mean correlation was 0.995. Clearly the architecturershin Fig. 7 with graph convolution
layers applied to unstructured field data is an effective ehofithis microstructural response.
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FIG. 10: Comparison of true (lines) and predictions (points withresponding color) for eight realizations
of the porous metal data

4.2 Efficacy of the Components of Hybrid Network

In this study we vary the three chosen architecture hypearpaters:Nt, N, and Ny for three
architectures: (a) a CNN, (b) the proposed dGCNN, and (c)@\S$ endowed with angle and
volume features. Both GCNN architectures employ the stah@&N filter, with a “+” pattern
and dependent center weight illustrated in Fig. 9(f). Alldets are trained to the 2D CP dataset.

Figure 11 shows the correlatiod¥t) and errorse(t) over time for the three architectures
for a range of filtergVs € {1,..., 6} for one or two convolutional layers\i; = {1, 2}) and one
dense layer{y = 1). Note that two dense layer®y = 2, produced similar results. Generally
the correlation of all three hybrid CNN-RNNs is better earlin the process, while the error
tends to peak early on near the end of the elastic regime whem@sponse variance is highest.
Referring to Fig. 6(a), we observe that elastic-to-plastasition occurs around 0.1%, and this
transition is apparent in Fig. 11 where the correlation appto transition between two plateaus.
All architectures improve with more filters although thesaiclearly a limit to the improvement,
which suggests a small number of relevant features. ltisagdparent that more filters are needed
to capture the later plastic regime accurately than thalrgtastic regime.

The simplest CNN models (fewest parameters) that have tsiepeeformance aré4:1:1)
with 269 parameterg,3:2:1) with 271 parameters (shown in Fig. 11), a(®11:2) with 187
parameters(2:2:2) with 151 (not shown). This demonstrates the fungibility loé thodes in
the network. The proposed dGCNN wifli; = 1 with either Ny = {1,2} does well in the
elastic regime forV; > 3 but achieves no greater thary @orrelation for plastic for all cases
with Ny < 9; however, with a second convolutional layer three filteessafficient to achieve the
accuracy of the best CNN architectures. This indicatessthaind nearest neighbors are required
to represent the plastic flow well using the standard GCN fittéthe dGCNN architecture. This
finding will be revisited in Section 4.3. Lastly, all the vants of rtGCNN with angle and volume
node features gave similar (poor) performance. The rGCNarb} requires more features for
improvement. This finding will be expanded on in Section 4.4.

Table 1 compares the number of trainable parameters foihtiee types of convolutional
networks. Clearly, the additional weights in the pixeldshsonvolutional layers incur a cost in
complexity and training. Also, the parameter complexityhaf dGCNN is essentially equivalent
to the rGCNN since the same filters are being used on diffeyeaghs and data. The data is
certainly different, with the rGCNN storing more featuresaomore compact adjacency than the
dGCNN; with sparse storage this is not a significant advataigmoderately sized meshes.
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FIG. 11: Architecture comparison (2D CP data): (a) CNN, (b) dGCNN:NGpplied directly to the grid,
(c) rGCNN: GCN applied to clustered/segmented data. Lefefsa 1 convolutional layer, 1 dense layer;
right panels: 2 convolutional layers, 1 dense layer.

4.3 Comparison of Convolutional Filters

Motivated by the fact that a CNN can achieve good performavitte only one convolutional
layer we tried richer variants of the standard GCN filter (rehthe self-weight is set equal to
the neighbor weight). Using the patterns shown in Fig. 9, xy@azed their relative performance

Journal of Machine Learning for Modeling and Computing



Mesh-Based Graph Convolutional Neural Networks 19

TABLE 1: Parameter counts for architectures with GCN
filters applied to 2D CP data

Architecture CNN dGCNN rGCNN
(1:1:3) 41 26 27
(2:1:3 99 75 71
(4:1:1 269 209 213
(6:1:1) 511 421 427
(1:2:1) 55 32 33
(2:2:) 145 69 85
(4:2:1) 433 245 249
(6:2:1) 865 487 493

with one convolutional layerX; = 1) and four filters (v = 4). Figure 12(a) shows that patterns
+, X, O, which only have one trainable weight and have intéoas with edge, vertex-only, and
edge+vertex neighbors, respectively, have comparabldemsdthan satisfactory performance.
Even thex pattern, where edge and node neighbors are given separigtesvgwo independent
weights), has an inferior performance to the CNN (which hias independent weights). Only
the # pattern, where the center pixel is given an independeigtht from the vertex neighbors,
has performance on par with the CNN. Given this finding we aredbeach of the basic patterns
{+, X, O, x} with an independent central weight. As shown in Fig. 12(his tvas sufficient
to improve the performance of all but the X (vertex-only reigrs) to be comparable with the
CNN. It is physically plausible that that edge neighborsehavstronger influence than vertex
neighbors and it appears that they are required for thesfittelearn predictive interactions.

4.4 Selected Features

In Section 4.2 we observed that the feature-dependent rGfokihulation had subpar perfor-
mance especially in the plastic regime that was not imprevitda more complex GCNN com-
ponent. Figure 13 shows the performance ¢#2:1) rGCNN network does improve with an
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FIG. 12: Filter comparison (2D CP data): (a) patterns illustrated Biand (b) edge, vertex, and both filters
augmented with an independent center weight

Volume 3, Issue 1, 2022



20 Frankel et al.

z
5 osf
5 os}
m|
c 047}
S
9 o2f
0
107 —=
oc /‘A/{’ =~ ~.
2 102 |/, =
s
w
10-3 L L L L L
0 0.05 0.1 0.15 0.2 0.25 03

STRAIN [%]

FIG. 13: Comparison of —tGCNN with increasing number of features (ZDdata). Features: angle, volume,
area, surface area. Graph labels correspond{argle, volumé, 3: {angle, volume, argaand 4:{angle,
volume, area, surface afeeDashed lines: self-weight equal to neighbor weight; sbiids: self-weight
independent of neighbor weight.

expanded feature set. Here, in addition to the orientatimfeaand the volume associated with
the clusters/grains represented by the graph nodes (talde¢atures), we added the surface area
of each grain (three total features) and the area of the gratris on the surface of the cell (four
total features) to the node features. The improvement \witee additional features is marginal.
However, if we allow for an independent self-weight by chiagghe standard GCN pattern to
the # pattern, as in the previous section, the performangeamatically improved and the im-
provement with additional features is more distinct. Aligh these networks have considerably
smaller adjacency matrices than dGCNN due to the clusterirtbe pixels, the performance
is subpar, particularly in the plastic regime. This servesa illustration of the difficulty of
improvement by feature selection, as opposed to deep teprNbte only elastic response was
modeled in Vlassis et al. (2020).

4.5 Data Efficiency

As a last trial with the 2D CP dataset, we investigated howciefit the best networks are
with smaller datasets. Here we compared (@)L:1) CNN with 269 parameters, (H}:2:1)
dGCNN with the + pattern (GCNN+) and 317 parameters, and4d):1) dGCNN with the #
pattern (GCNN#) and 249 parameters. The training set wasceetfrom 80% of the 12,000
realizations (9600) by a fraction that ranged from 0.01 t The test set was a fixed 20%
(2400) of the full realizations and the results were avetdlageer nine trials. Figure 14 shows
that the majority of learning (improvement in accuracy)urscby the time the training size is
approximately equal to the number of parameters. After thp-down in error (at 0.04 of the
total training set for the CNN, at 0.02 for the GCNN+, and @50GCNN#) the improvement is
relatively slow but steady. This data demonstrates thagtlsenall networks can be effective at
the prediction of the homogenized response task, Eq. (1),mich smaller datasets.

4.6 Boosting with Preconceived Features

Now that we have discovered effective adjacencies and go@an architecture hyper-parame-
ters, we turn to using the 3D CP datasets. Motivated by thetfeat some features of the
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FIG. 14: 2D CP data: data efficiency comparison dr1:1) CNN with 269 parameterg$4:2:1) dGCNN+
317 parameters, an@:1:1) dGCNN# with 249 parameters. Note: @{t) is being plotted in the upper
panel.

image ¢ (X) have obvious bearing on the output due to physical reaspmirgboosted the
dGCNN with some of the features we employed with the soledyuiee-based rGCNN. The pro-
posed architecture can accommodate preselected featusamply augmenting the image/cell
microstructural fieldb with additional channels. Figure 15 shows the effect of ag@di channel
with the volume fraction of the associated grain to eachlp&kearly there is a distinct and uni-
form benefit; however, it is somewhat marginal due to the ttzat the selected feature is likely,
at least partially, redundant/correlated with the outgduhe trainable filters. Additional means
of augmenting with more global data, such as the average giz¢ or equivalently the grain
density, via inputs concatenated to the pooling layer (gnayig. 7) output going to the dense
layers (green in Fig. 7) would also likely prove beneficial.

4.7 Generalizability

Using CNN, GCNN+, and GCNN# with 32 filters, one or two contmnal layers, and one
dense layer, Fig. 16 shows that the proposed architectuheting # filter with an independent
central weight can outperform a corresponding CNN and GCNNte benefits of the more
complex(32:2:1) configuration over the othg32:1:1) appear to be most significant for the
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FIG. 15: Effect of boosting the microstructural input field with withlume fraction
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FIG. 16: 3D data: performance ¢82:1:1) and(32:2:1) configurations of a CNN, dGCNN+, and dGCNN#
for the low- and high-variance datasets (2:GCNN+ denot@2a2:1) direct graph CNN using a “+” pat-
tern). (a) Low-variance and (b) high-variance.

two dGCNNSs. It is also apparent that all the types of conwoihal neural networks perform
better, at least in terms of correlation, on the higher vexéadataset than on the lower variance
dataset.

Now focusing on the GCNN#, Fig. 17 shows the distribution M$E errors [Eq. (18)] is
approximately Gaussian with some outlier errors above 5¢4he high-variance dataset and
3% for the low-variance dataset. A direct comparison of tine aand predicted values over a
sequence of strains, shown in Fig. 18, indicates that the IBEblerpredicts values near the
mean, which may be due it being harder to distinguish neammesponse microstructures from
those that produce extreme/outlier responses.

Following this conjecture, Fig. 19 illustrates that traigion the low-variance ensemble and
testing on the high-variance ensemble (which also has erdifft mean) does relatively poorly
compared to the reverse. It appears that the network géresalell to different distributions of
inputs if they are in the span of the training set, i.e., itslaell at interpolation and less well at
extrapolation to potential out-of-distribution samples.
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—— strain= 0.24% /] —— strain=0.24%
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FIG. 17: 3D data: cumulative distribution of error for various sts(32:2:1) dGCNN#]. (a) Low-variance
and (b) high-variance.
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FIG. 18: 3D data: distribution of true (solid) and predicted (dojtsttess values for various strains
[(32:2:1) dGCNN#]. (a) Low-variance and (b) high-variance.
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5. DISCUSSION

The response of microstructures for use in multiscale sitrars, structure-property investi-
gations, and uncertainty quantification can be accuratelgieled with graphs. The proposed
formulation used the topology of the data discretizatiomatly instead of a segmentation or
clustering of the image data. This aspect should have péatiadvantages forimage data where
the segmentation is not obvious, hard to compute, or obddwenoise. Furthermore, it has a
simple implementation and avoids the need for feature @®ging, but can benefit fromit. The
architecture draws on both purely graph-based networkpandutationally invariant convo-
lutional filters. We demonstrated that endowing the widedgdiGCN filter (Kipf and Welling,
2016a) with an independent self-weight, as suggested byeithgction of the ChebNet, can
significantly improve accuracy without adding additioratérs and their parameters. The inde-
pendent self-weight allows for differencing the node ddttéhe self and its neighbors instead
of only averaging. This can be seen as giving the filter thitabd infer edge features between
the central pixel and its neighbors. For physical problemiged by gradients this change to
the filter is important. We also found that pixel edge neigkltere more crucial for a predic-
tive model than vertex-only neighbors. Lastly, we were abldemonstrate that small, efficient
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graph convolutional networks can be effective at the tagbredlicting the homogenized evolu-
tion of complex microstructure. This has significant apgtiiens in subgrid constitutive models
in large scale-simulations, structure-property invedtans, and material uncertainty quantifica-
tion.

An apparent downside of the proposed approach is the graphisaadjacency grows with
resolution of image (number of pixels/elements). Thisésisupartially offset by sparse storage
of the adjacency matrix, in general, and largely ameliatdig data that is on the same dis-
cretization. In future work we will investigate low-rank@oximations to the adjacency matrix
(Kanada et al., 2018; Lebedev et al., 2014; Richard et al228avas and Dhillon, 2011; Tai
et al., 2015), dimensionality reduction techniques (Belind Niyogi, 2003; He and Niyogi,
2004), and the use of graph autoencoders (Hasanzadeh 209;, Kipf and Welling, 2016b;
Liao et al., 2016; Salehi and Davulcu, 2019) to reduce thenAbased graphs in-line. We are
also pursuing the larger topic of processing images withtinegblution filters (Zhang et al.,
2018), e.g., spanning the pixel to the cluster level.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Deeant of Energy, Office of Science,
Advanced Scientific Computing Research program. Sandi@miNatlaboratories is a multimis-
sion laboratory managed and operated by National Techpaad Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell Intdfaaal, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administrationder contract DE-NA-0003525.
This paper describes objective technical results and aisalfny subjective views or opinions
that might be expressed in the paper do not necessarilysemréhe views of the U.S. De-
partment of Energy or the United States Government. Theoasitiratefully acknowledge the
use of the TensorFlow (https://www.tensorflow.org/) andi&gal (https://graphneural.network/)
frameworks in this work.

REFERENCES

Albawi, S., Mohammed, T.A., and Al-Zawi, S., Understandifig Convolutional Neural Network, iRroc.
of 2017 Int. Conf. on Engineering and Technology (ICENtalya, Turkey, August 21-23, 2017.

Belkin, M. and Niyogi, P., Laplacian Eigenmaps for Dimemsitity Reduction and Data Representation,
Neural Comput.vol. 15, no. 6, pp. 1373-1396, 2003.

Bessa, M.A., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W.ilBon, C., Chen, W., and Liu, W.K., A Frame-
work for Data-Driven Analysis of Materials under UncertgirCountering the Curse of Dimensionality,
Comput. Methods Appl. Mech. Engol. 320, pp. 633-667, 2017.

Bishop, C.M. Pattern Recognition and Machine LearnirBerlin/Heidelberg, Germany: Springer, 2006.

Bishop, J. and Hill, R., CXXVIII. A Theoretical Derivationfahe Plastic Properties of a Polycrystalline
Face-Centred Metal,ondon, Edinburgh, Dublin Philosoph. Mag. J. Seiol. 42, no. 334, pp. 1298—
1307, 1951a.

Bishop, J. and Hill, R., XLVI. A Theory of the Plastic Distarh of a Polycrystalline Aggregate under
Combined Stressekpndon, Edinburgh, Dublin Philosoph. Mag. J. Seol. 42, no. 327, pp. 414-427,
1951b.

Bjorck, J., Gomes, C., Selman, B., and Weinberger, K.Q.,ddstdnding Batch Normalization, 2018.
arXiv: 1806.02375

Journal of Machine Learning for Modeling and Computing



Mesh-Based Graph Convolutional Neural Networks 25

Bouquerel, J., Verbeken, K., and De Cooman, B., MicrostmgeBased Model for the Static Mechanical
Behavior of Multiphase Steelécta Mater, vol. 54, no. 6, pp. 1443-1456, 2006.

Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., and Vamgyiheynst, P., Geometric Deep Learning: Going
beyond Euclidean Datd&EE Signal Proc. Mag.vol. 34, no. 4, pp. 18-42, 2017.

Brown, J., Carroll, J., Huddleston, B., Casias, Z., and LdtgA Multiscale Study of Damage in Elas-
tomeric Syntactic Foams, Mater. Sci.vol. 53, no. 14, pp. 10479-10498, 2018.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y., Spectraibids and Locally Connected Networks on
Graphs, 2013. arXiv: 1312.6203

Cekada, M., Panjan, P., Kek-Merl, D., Panjan, M., and Kayin SEM Study of Defects in PVD Hard
CoatingsVacuumvol. 82, no. 2, pp. 252-256, 2007.

Chen, G., Hong, Y., Zhang, Y., Kim, J., Huynh, K.M., Ma, J.nLW., Shen, D., Yap, P.T., and the
UNC/UMN Baby Connectome Project Consortium, Estimatings@ie Microstructure with Undersam-
pled Diffusion Data via Graph Convolutional Neural Netwsyrl International Conference on Medical
Image Computing and Computer-Assisted Interventiima, Peru, pp. 280-290, 2020.

Chidester, B., Do, M.N., and Ma, J., Rotation Equivarianad bavariance in Convolutional Neural Net-
works, 2018. arXiv: 1805.12301

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, udgares, F., Schwenk, H., and Bengio, Y.,
Learning Phrase Representations Using RNN Encoder-Dedodé&tatistical Machine Translation,
2014. arXiv: 1406.1078

Chowdhury, A., Kautz, E., Yener, B., and Lewis, D., Imageven Machine Learning Methods for Mi-
crostructure RecognitiolGomput. Mater. Scivol. 123, pp. 176-187, 2016.

Cohen, T. and Welling, M., Group Equivariant ConvolutioNatworks, inProc. of Int. Conf. on Machine
Learning pp. 2990-2999, New York, NY, June 19-24, 2016.

Dawson, P.R., Computational Crystal Plasticltyt, J. Solids Structvol. 37, nos. 1-2, pp. 115-130, 2000.

DeCost, B.L., Francis, T., and Holm, E.A., Exploring the Kistructure Manifold: Image Texture Repre-
sentations Applied to Ultrahigh Carbon Steel Microstrues)Acta Mater, vol. 133, pp. 30—-40, 2017.

Defferrard, M., Bresson, X., and Vandergheynst, P., Cartiahal Neural Networks on Graphs with Fast
Localized Spectral Filtering, 2016. arXiv: 1606.09375

Dieleman, S., De Fauw, J., and Kavukcuoglu, K., Exploitingie Symmetry in Convolutional Neural
Networks, inProc. of 33rd Int. Conf. on Machine Learningew York, NY, pp. 1889-1898, June 19-24,
2016.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A.G., Getliging Convolutional Neural Networks for
Equivariance to Lie Groups on Arbitrary Continuous DataRinc. of Int. Conf. on Machine Learning
Virtual Event, pp. 3165-3176, July 13-18, 2020.

Frankel, A.L., Jones, R.E., Alleman, C., and Templeton,,J®edicting the Mechanical Response of
Oligocrystals with Deep Learnin@Gomput. Mater. Scivol. 169, p. 109099, 2019.

Frankel, A., Tachida, K., and Jones, R., Prediction of thelion of the Stress Field of Polycrystals Un-
dergoing Elastic-Plastic Deformation with a Hybrid Neuxatwork ModelMach. Learn.: Sci. Techngl.
vol. 1, no. 3, p. 035005, 2020.

Fulton, L., Modi, V., Duvenaud, D., Levin, D.l., and JacobsA., Latent-Space Dynamics for Reduced De-
formable SimulationComputer Graphics Forunvol. 38, Hoboken, NJ: Wiley Online Library, pp. 379—
391, 2019.

Ghosh, S. and Dimiduk, D., EdsComputational Methods for Microstructure-Property R@aships
vol. 1, Berlin/Heidelberg, Germany: Springer, 2011.

Glorot, X. and Bengio, Y., Understanding the Difficulty ofalining Deep Feedforward Neural Networks,
in Proc. of the 13th Int. Conf. on Atrtificial Intelligence anagfstics pp. 249-256, Sardinia, Italy, May

Volume 3, Issue 1, 2022



26 Frankel et al.

13-15, 2010.

Glorot, X., Bordes, A., and Bengio, Y., Deep Sparse Rectifieural Networks, irProc. of the 14th Int.
Conf. on Artificial Intelligence and Statistigsp. 315—-323, Ft. Lauderdale, FL, USA, April 11-13, 2011.

Goodfellow, I, Bengio, Y., and Courville, ADeep LearningCambridge, MA: MIT Press, 2016.

Groeber, M.A. and Jackson, M.A.,, DREAM.30 accessed September 2020, from
http://dream3d.bluequartz.net, 2019.

Hammond, D.K., Vandergheynst, P., and Gribonval, R., Wetgebn Graphs via Spectral Graph Theory,
Appl. Comput. Harmonic Analvol. 30, no. 2, pp. 129-150, 2011.

Hasanzadeh, A., Hajiramezanali, E., Duffield, N., NarayakaR., Zhou, M., and Qian, X., Semi-Implicit
Graph Variational Auto-Encoders, 2019. arXiv: 1908.07078

Hastie, T., Tibshirani, R., Friedman, J., and FranklinTe Elements of Statistical Learning: Data Mining,
Inference and PredictioMath. Intel, vol. 27, no. 2, pp. 83-85, 2005.

He, X. and Niyogi, P., Locality Preserving ProjectioAslvances in Neural Information Processing Systems
16, pp. 153-160, Vancouver, Canada, December 8-13, 2004.

Heckman, N.M., Ivanoff, T.A., Roach, A.M., Jared, B.H., TulD.J., Brown-Shaklee, H.J., Huber, T., Saiz,
D.J., Koepke, J.R., Rodelas, J.M., Madison, J.D., Salztae®.C., Swiler, L.P., Jones, R.E., and Boyce,
B.L., Automated High-Throughput Tensile Testing ReveaiscBastic Process Parameter Sensitivity,
Mater. Sci. Eng.: Avol. 772, p. 138632, 2020.

Herriott, C. and Spear, A.D., Predicting Microstructurepg@ndent Mechanical Properties in Additively
Manufactured Metals with Machine- and Deep-Learning Mdth&Comput. Mater. Sci.vol. 175,
p. 109599, 2020.

Hochreiter, S. and Schmidhuber, J., Long Short-Term Mepigeural Comput.vol. 9, no. 8, pp. 1735—
1780, 1997.

Hopfield, J.J., Neural Networks and Physical Systems wittefgent Collective Computational Abilities,
Proc. National Acad. Scivol. 79, no. 8, pp. 2554-2558, 1982.

Jones, R., Templeton, J.A., Sanders, C.M., and Ostien,Machine Learning Models of Plastic Flow
Based on Representation Thed@gmput. Model. Eng. S¢ivol. 117, no. 3, pp. 309-342, 2018.

Kanada, T., Onuki, M., and Tanaka, Y., Low-Rank Sparse Dgamition of Graph Adjacency Matrices for
Extracting Clean Clusters, idroc. of 2018 Asia-Pacific Signal and Information Procegsissociation
Annual Summit and Conference (APSIPA ASp) 1153-1159, Honolulu, Hawaii, November 12-15,
2018.

Khalil, M., Teichert, G., Alleman, C., Heckman, N., Jones, Garikipati, K., and Boyce, B., Modeling
Strength and Failure Variability Due to Porosity in Addély Manufactured MetalsComput. Methods
Appl. Mech. Eng.vol. 373, p. 113471, 2021.

Kipf, T.N. and Welling, M., Semi-Supervised Classificatiith Graph Convolutional Networks, 2016a.
arXiv: 1609.02907

Kipf, T.N. and Welling, M., Variational Graph Auto-Encode2016b. arXiv: 1611.07308

Kocks, U., Laws for Work-Hardening and Low-Temperaturedprd. Eng. Mater. Technalvol. 98, no. 1,
pp. 76-85, 1976.

Kondo, R., Yamakawa, S., Masuoka, Y., Tajima, S., and AfahiMicrostructure Recognition Using Con-
volutional Neural Networks for Prediction of lonic Condivdy in Ceramics,Acta Mater, vol. 141,
pp. 29-38, 2017.

Kondor, R. and Trivedi, S., On the Generalization of Equasmce and Convolution in Neural Networks to
the Action of Compact Groups, iRroc. of 35th Int. Conf. on Machine Learnin§tockholm, Sweden,
pp. 2747-2755, July 10-15, 2018.

Kraft, T., Rettenmayr, M., and Exner, H., An Extended NumerProcedure for Predicting Microstructure

Journal of Machine Learning for Modeling and Computing



Mesh-Based Graph Convolutional Neural Networks 27

and Microsegregation of Multicomponent Alloygodel. Simul. Mater. Sci. Engvol. 4, no. 2, p. 161,
1996.

Krizhevsky, A., Sutskever, I., and Hinton, G.E., ImagenktsSification with Deep Convolutional Neural
Networks,Adv. Neural Inform. Proc. Sysvol. 25, pp. 1097-1105, 2012.

Kroner, E., On the Plastic Deformation of Polycrystélsta Metallurg, vol. 9, no. 2, pp. 155-161, 1961.

Le, C., Bruns, T.E., and Tortorelli, D.A., Material Microstture Optimization for Linear Elastodynamic
Energy Wave Managemert, Mech. Phys. Solidsol. 60, no. 2, pp. 351-378, 2012.

Lebedeyv, V., Ganin, Y., Rakhuba, M., Oseledets, |., and litsky V., Speeding-Up Convolutional Neural
Networks Using Fine-Tuned CP-Decomposition, 2014. arXi12.6553

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howar#, RHubbard, W., and Jackel, L.D., Back-
propagation Applied to Handwritten Zip Code Recognitideural Comput.vol. 1, no. 4, pp. 541-551,
1989.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradi®ased Learning Applied to Document Recog-
nition, Proc. IEEE vol. 86, no. 11, pp. 2278-2324, 1998.

Lee, K. and Carlberg, K., Deep Conservation: A Latent-Dyieariviodel for Exact Satisfaction of Physical
Conservation Laws, 2019. arXiv: 1909.09754

Li, Y., Hu, S., Sun, X., and Stan, M., A Review: Applicationtbhe Phase Field Method in Predicting
Microstructure and Property Evolution of Irradiated Nucl®&aterialsppj Comput. Mater.vol. 3, no. 1,
p. 16, 2017.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattearya, K., Stuart, A., and Anandkumar, A.,
Multipole Graph Neural Operator for Parametric Partiaf@iéntial Equations, 2020. arXiv: 2006.09535

Liao, Y., Wang, Y., and Liu, Y., Graph Regularized Auto-Edeos for Image RepresentatidBEE Trans-
act. Image Processvol. 26, no. 6, pp. 2839-2852, 2016.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F,EA Survey of Deep Neural Network Archi-
tectures and Their Applicationsleurocomput.vol. 234, pp. 11-26, 2017.

Lubbers, N., Lookman, T., and Barros, K., Inferring Low-&nsional Microstructure Representations
Using Convolutional Neural NetworkBhys. Rev. Evol. 96, no. 5, p. 052111, 2017.

Lubliner, J.,Plasticity TheoryNorth Chelmsford, MA: Courier Corporation, 2008.

Mandel, J., Généralisation de la Théorie de Plastdg¢@NT Koiter, Int. J. Solids Struct.vol. 1, no. 3,
pp. 273-295, 1965.

Mecking, H., Kocks, U., and Fischer, H., Hardening, Recgvand Creep in FCC Mono- and Polycrystals,
in Proc. the 4th Int. Conf. on Strength of Metals and Allojancy, France, August 30—September 3,
1976.

Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Caocarld, Bessa, M., Deep Learning Predicts
Path-Dependent PlasticitPyoc. Nat. Acad. Scivol. 116, no. 52, pp. 26414-26420, 2019.

Mura, T.,Micromechanics of Defects in Soliderlin/Heidelberg, Germany: Springer Science & Business
Media, 2013.

Nemat-Nasser, S. and Hori, Mlicromechanics: Overall Properties of Heterogeneous Mate, Amster-
dam, Netherlands: Elsevier, 2013.

Noh, J., Kim, J., Stein, H.S., Sanchez-Lengeling, B., Giregd.M., Aspuru-Guzik, A., and Jung, Y.,
Inverse Design of Solid-State Materials via a ContinuoysrBeentationMatter, vol. 1, no. 5, pp. 1370—
1384, 2019.

O’'Shea, K. and Nash, R., An Introduction to Convolutionalik Networks, 2015. arXiv: 1511.08458

Pandey, A. and Pokharel, R., Machine Learning Enabled §atecCrystal Plasticity Model for Spatially
Resolved 3D Orientation Evolution under Uniaxial Tens@®20. arXiv: 2005.00951

Volume 3, Issue 1, 2022



28 Frankel et al.

Qin, Z,, Yu, F., Liu, C., and Chen, X., How Convolutional NelNetwork See the World—A Survey of
Convolutional Neural Network Visualization Methods, 20a8Xiv: 1804.11191

Quiroga, F., Ronchetti, F., Lanzarini, L., and BarivieralFARevisiting Data Augmentation for Rotational
Invariance in Convolutional Neural Networks, Modelling and Simulation in Management Sciences
Berlin/Heidelberg, Germany: Springer, pp. 127-141, 2018.

Richard, E., Savalle, P.A., and Vayatis, N., Estimation iofi8taneously Sparse and Low Rank Matrices,
2012. arXiv: 1206.6474

Rizzi, F., Khalil, M., Jones, R.E., Templeton, J.A., Osti@T., and Boyce, B.L., Bayesian Modeling of
Inconsistent Plastic Response Due to Material Variahii§18. arXiv: 1809.01009

Roduit, C., Sekatski, S., Dietler, G., Catsicas, S., Lafbntand Kasas, S., Stiffness Tomography by Atomic
Force MicroscopyBiophys. J.vol. 97, no. 2, pp. 674—677, 2009.

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D Bieler, T.R., and Raabe, D., Overview of Consti-
tutive Laws, Kinematics, Homogenization and MultiscaletMels in Crystal Plasticity Finite-Element
Modeling: Theory, Experiments, Application&cta Mater, vol. 58, no. 4, pp. 1152-1211, 2010.

Rowley, H.A., Baluja, S., and Kanade, T., Rotation Invarisieural Network-Based Face Detection, in
Proc. of 1998 IEEE Computer Society Conf. on Computer Viaiwth Pattern Recognitiqrpp. 38—44,
Santa Barnara, California, June 23-25, 1998.

Salehi, A. and Davulcu, H., Graph Attention Auto-Encod2fx 9. arXiv: 1905.10715

Salinger, A.G., Bartlett, R.A., Bradley, A.M., Chen, Q.,ldeshko, I.P., Gao, X., Hansen, G.A., Mota, A.,
Muller, R.P., Nielsen, E., Ostien, J.T., Pawlowski, R.Rrggo, M., Phipps, E.T., Sun, W.C., and Tezaur,
I.K., Albany: Using Component-Based Designto Develop aiBle, Generic Multiphysics Analysis
Code,Int. J. Multiscale Comput. Engvol. 14, no. 4, pp. 415-438, 2016.

Savas, B. and Dhillon, I.S., Clustered Low Rank Approximaf Graphs in Information Science Appli-
cations, inProc. of the 2011 SIAM International Conference on Data MiyMesa, AZ, USA, pp. 164—
175, April 28-30, 2011.

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and W@¢&, Convolutional LSTM Network: A
Machine Learning Approach for Precipitation NowcastingProc. of Advances in Neural Information
Processing Systems 28: Annual Conf. on Neural Informatimtdéssing SystemMontreal, Canada,
pp. 802-810, December 7-12, 2015.

Silhavy, M., The Mechanics and Thermodynamics of Continuous Mdskalin/Heidelberg, Germany:
Springer Science & Business Media, 2013.

Stenzel, O., Pecho, O., Holzer, L., Neumann, M., and SchriidtPredicting Effective Conductivities
Based on Geometric Microstructure Characteris#d§hE J, vol. 62, no. 5, pp. 1834-1843, 2016.

Stewart, J.R. and Edwards, H.C., Sierra Mechanics, aatesSeptember 2020, from
https://www.sandia.gov/asc/advanced-simulation-eomiputing/integrated-codes, 2020.

Tai, C., Xiao, T., Zhang, Y., Wang, X., and E, W., ConvolutaMeural Networks with Low-Rank Regu-
larization, 2015. arXiv: 1511.06067

Taylor, G.l., The Mechanism of Plastic Deformation of Cafst Part |. TheoreticaRroc. Roy. Soc. Lon-
don. Ser. Avol. 145, no. 855, pp. 362-387, 1934.

Trask, N., Huang, A., and Hu, X., Enforcing Exact Physicsdiestific Machine Learning: A Data-Driven
Exterior Calculus on Graphs, 2020. arXiv: 2012.11799

Trask, N., Patel, R.G., Gross, B.J., and Atzberger, P.J.L&Mets: A Framework for Learning from
Unstructured Data, 2019. arXiv: 1909.05371

Trovalusci, P., Capecchi, D., and Ruta, G., Genesis of th#iddale Approach for Materials with Mi-
crostructureArchive Appl. Mech.vol. 79, no. 11, pp. 981-997, 2009.

Vlassis, N.N., Ma, R., and Sun, W., Geometric Deep LearnmrgGomputational Mechanics Part I:

Journal of Machine Learning for Modeling and Computing



Mesh-Based Graph Convolutional Neural Networks 29

Anisotropic HyperelasticityComput. Methods Appl. Mech. Engol. 371, p. 113299, 2020.

Worrall, D.E., Garbin, S.J., Turmukhambetov, D., and BrastG.J., Harmonic Networks: Deep Transla-
tion and Rotation Equivariance, Rroc. of the IEEE Conf. on Computer Vision and Pattern Reitomm
Honolulu, HI, USA, pp. 5028-5037, July 21-26, 2017.

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., and Philip,, . €omprehensive Survey on Graph Neural
Networks,Proc. IEEE Transact. Neural Networks Learn. Syabl. 32, no. 1, pp. 4-24, 2020.

Yin, X., Chen, W., To, A., McVeigh, C., and Liu, W.K., Stafisil Volume Element Method for Predicting
Microstructure—Constitutive Property Relatio@mput. Methods Appl. Mech. Engol. 197, nos. 43-
44, pp. 3516-3529, 2008.

Zhang, T., Liu, B., Niu, D., Lai, K., and Xu, Y., Multiresolian Graph Attention Networks for Relevance
Matching,Proc. of the 27th ACM Int. Conf. on Information and Knowledi¢gnagementTorino, Italy,
pp. 933-942, October 22—-26, 2018.

Zhang, Z., Cui, P., and Zhu, W., Deep Learning on Graphs: A&ur2020. arXiv: 1812.04202

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, lLi, C., and Sun, M., Graph Neural
Networks: A Review of Methods and Application, Open vol. 1, pp. 57-81, 2020.

APPENDIX A. THE GRAPH CONVOLUTIONAL NETWORK

As mentioned in the Introduction, the Kipf and Welling grapinvolutional network (GCN)
(Kipf and Welling, 2016a) provides an innovative, expresgjraph convolutional network built
in sequentially applied layers with local action. Here weegh brief synopsis of their develop-
ment.

The objective is to efficiently apply a graph filtgs = diag(0) where the parameter vector
0 has Nyoges €ntries. Convolution of the filtegg and datax on a graph can be expressed as
(Hammond et al., 2011)

ge *x = Uge UTx, (A.1)

analogous to the classical convolution theorem. This féatian is connected to the (normal-
ized) graph Laplaciah and its spectral representation

L=1-DY2AD %2 = yAUT, (A.2)

whereA is the binary adjacency matriQ is the associated degree matrikjs the matrix of
eigenvectors, and is the diagonal matrix of eigenvalues. The formulation faagih convolu-
tion in Eqg. (A.1), in turn, can be approximated by an expamsibChebyshev polynomials;,
(Defferrard et al., 2016)

go *x = (UgoUT) x = Y 9 oTi(L) x, (A.3)
k

whereL = (2/Amax)L — | andAnax is the maximum eigenvalue af

To this approximation Kipf and Welling (2016a) make a nundfexdditional simplifications.
First they approximate the maximum eigenvalygy, ~ 2 so that. = L — |, i.e., L is the graph
Laplacian with added self-loops/interactions. Next, theycate the expansion in Eq. (A.3) at
K = 1so that

go * x ~ dolx — 9D~ Y2AD?x. (A.4)
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This effectively reduces the number of free parametersdriliier from N,ogesto 2. This has
the tremendous advantage of cheap and local action. Thessipeness of a network built on
these layers is controllable by the GCNN depth (number adngly Lastly, they further collapse
the number of free parameters from 2 to 1 by setfing= —o.
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