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Recently, a general data-driven numerical framework was developed for learning and modeling of
unknown dynamical systems using fully- or partially-observed data. The method utilizes deep neu-
ral networks (DNNSs) to construct a model for the flow map of the unknown system. Once an ac-
curate DNN approximation of the flow map is constructed, it can be recursively executed to serve
as an effective predictive model of the unknown system. In this paper, we apply this framework to
chaotic systems, in particular the well-known Lorenz 63 and 96 systems, and critically examine
the predictive performance of the approach. A distinct feature of chaotic systems is that even the
smallest perturbations will lead to large (albeit bounded) deviations in the solution trajectories. This
makes long-term predictions of the method, or any data-driven methods, questionable, as the local
model accuracy will eventually degrade and lead to large pointwise errors. Here we employ several
other qualitative and quantitative measures to determine whether the chaotic dynamics has been
learned. These include phase plots, histograms, autocorrelation, correlation dimension, approximate
entropy, and Lyapunov exponent. Using these measures, we demonstrate that the flow map based
DNN learning method is capable of accurately modeling chaotic systems, even when only a subset
of the state variables is available to the DNNs. For example, for the Lorenz 96 system with 40 state
variables, when the data of only three variables are available, the method is able to learn an effective
DNN model for the three variables and produce accurately the chaotic behavior of the system.
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1. INTRODUCTION

Due to recent advances in machine learning software and wimgphardware combined with
the availability of vast amounts of data, data-driven l@egrof unknown dynamical systems
has been a very active research area in the past few yearsv@n® approach this problem
is governing equation discovery, where a map is construtted state variables to their time
derivatives. Among other techniques, this can be achielsesparse approximation, where under
certain circumstances exact equation recovery is possibks, for example, Brunton et al. (2016)
and its many extensions in recovering both ODEs in Bruntad.g2016), Kang et al. (2019),
Schaeffer and McCalla (2017), Schaeffer et al. (2018), aad &nd Ward (2017) and PDEs in
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Rudy et al. (2017) and Schaeffer (2017). Deep neural nesM®kINSs) have also been used to
construct this mapping. See, for example, ODE modeling iet.ai. (2021b), Qin et al. (2019),
Raissi et al. (2018), and Rudy et al. (2019) and PDE modetfingng et al. (2018a,b), Lu et al.
(2021a), Raissi et al. (2017a,b), Raissi (2018), and Suh &@19).

Another approach for learning unknown systems, our focus, hie flow map or evolution
discovery, where a map is constructed between two systemsstaparated by a short time to
approximate the flow map of the system (Qin et al., 2019).kérgioverning equation discovery,
approximating the flow map does not directly yield the speddrms in the underlying equa-
tions. Rather, if an accurate flow map is discovered, thencaarate predictive model can be
defined for the evolution of the unknown system such that ainial condition can be marched
forward in time. This approach relies on a DNN, in particidaesidual network (ResNet) (He
etal., 2016), to approximate the flow map. Since its intréidndn Qin et al. (2019) to model au-
tonomous systems, a general framework has been developtbe filow map approximation of
unknown systems from their trajectory data that extendotmatonomous systems (Qin et al.,
2021a), parametric dynamical systems (Qin et al., 202 Hn)ighy observed dynamical systems
(Fu et al., 2020), as well as partial differential equati@@ken et al., 2022; Wu and Xiu, 2020).
Of particular interest in this paper is Fu et al. (2020), vehefinite memory of the state variable
time history is used to learn reduced systems where only sbthe state variables are observed
per the Mori—Zwanzig formulation.

The focus of this paper is to extend this flow map deep learfiangework tochaotic sys-
temsand examine its performance for both fully and partiallyetsd chaotic systems. Chaotic
systems exhibit ultrasensitivity to perturbations of thistem parameters and initial conditions.
Hence, they represent a highly challenging case for anypileguand modeling methods, partic-
ularly for long-term system behavior. Although well knowmeotic systems, e.g., the Lorenz 63
system, have been adopted in the literature, they were yngstd as demonstrative examples of
the proposed methods in the papers by using visual examimatiphase plots. The nearly im-
possible task of matching the long-term evolution of the tthaotic system is rarely addressed
in the existing literature. With an exclusive focus on ci@eystems, the purpose of this paper
is to systematically examine the long-term predictive aacy using a set of measures beyond
phase plots. These include bounded pointwise error, hishag, autocorrelation functions, cor-
relation dimension, approximate entropy, and Lyapunowagpt. Using these measures, we
further establish that the flow map based deep learning rdeshtapable of learning and mod-
eling chaotic systems and producing accurate long-tertesypredictions, for both fully- and
partially-observed systems.

1.1 Literature Review

The problem of learning fully- and partially-observed ctiasystems, especially the famous
Lorenz 63 system, has been a popular topic particularlyeratie of machine learning. Hence,
we limit the scope of this review to papers particularly valat to the subject of learning chaotic
dynamics.

The recent paper by Bhat and Munch (2022) is most similar i lork in that the au-
thors seek to learn partially-observed chaotic dynamidasgusiemory. This paper considers
observing just one variable, while we consider many contlina of partially-observed vari-
ables, and focuses on optimizing the network parametags (@imber of neurons and memory
length) of a particular recursive structure based on roamsguared error (RMSE), while we
consider additional measures of chaotic dynamics and agldResNet. There are also several
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other relevant papers including Trischler and D’Eleut¢#016), which uses a recurrent neural
network to predict chaotic systems including Lorenz 63. lnlkbw et al. (2021), the authors
discuss memory length and Takens’ theorem (Takens, 19&hgicontext of learning Lorenz
96. In addition, Scher and Messori (2019) consider appratitg chaotic dynamical systems
using limited data and external forcing. Also, Vlachas e{2018), Pawar et al. (2021), Chat-
topadhyay et al. (2020), and Dubois et al. (2020) use long-¢bom memory (LSTM) recurrent
networks to study fully- and partially-observed Lorenzteyss.

There are also several earlier papers, including Zimmennzend Neuneier (2000) which
proposes modeling dynamical systems via recurrent neetalanks, Kim et al. (1999) which
deals with estimating time delays (memory length) in Lorand other systems, Bakker et al.
(2000) that learns chaotic dynamics of reduced systems etigah networks, Miyoshi et al.
(1995) which learns chaotic dynamics with neural netwodks] Han et al. (2004a,b), which
predict the chaotic Rossler system using a simple RNN. Thapers are certainly relevant, but
lack the extensive examples and systematic verificatioerxgnts that are now more easily
achieved with today’s computing systems.

It is also worth mentioning a large body of work that uses &d#int approach (governing
equation discovery) to learning chaotic systems. In Bmrbal. (2016), the authors approxi-
mate the particular terms in chaotic systems (the rightdlsaaes) through sparse optimization
or network learning. Other work in this area includes Brun&b al. (2017) and Lusch et al.
(2018) which focus on learning delayed embeddings, Raiszl. ¢2018) which uses physics-
informed neural networks, Pan and Duraisamy (2018), whigliatly learns the closure of the
partially observed Lorenz 63 system via a NN, Champion g28119) which combines learn-
ing a coordinate transform from the delayed embedding doatels with learning the dynamic
coordinates of chaotic systems, Rudy et al. (2019) whicinkethe Lorenz system from noisy
data, and Bakariji et al. (2022) which learns the governingaégns for Lorenz (or a Lorenz-like
surrogate) from just one observation variable.

1.2 Contributions

The chief contribution of this paper is a systematic androgs examination of learning the
flow maps of fully- and partially-observed chaotic dynarhisgstems using an approachable
and mathematically grounded DNN framework. In most papesdidg with this topic, point-
wise error or a visual comparison of phase plots is used ®sagke accuracy of network pre-
diction. However, it is well known that chaotic systems axgremely sensitive to perturbation,
and therefore in the long run the model predictions will daginally stray from the truth. This
makes assessing the efficacy of the learned system, particibr long-term, a challenging
problem in and of itself. Hence, part of our contribution lig foroposal of a more robust ap-
proach to the assessment of learning chaotic behavior norexi in the existing literature
that includes standard techniques of error analysis sugoiaswise error and phase plots as
well as comparison of a variety of other measures that detraiasaccurate behavior, including
matching of histograms and autocorrelation, and stasigtiat quantify chaos such as correlation
dimension, approximate entropy, and Lyapunov exponenallyj we contribute several ambi-
tious numerical examples not explored in the literatureaAgenchmark, we consider learning
the well-known Lorenz systems with different combinatimisobserved variables. Of partic-
ular note is a 40-dimensional Lorenz 96 system with onlyehrariables observed, where we
demonstrate that the DNN method can learn the chaotic behavjeneral despite training data
being collected from a single long trajectory consistingwlfy three variables (out of 40).
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2. FLOW MAP MODELING OF UNKNOWN CHAOTIC DYNAMICAL SYSTEMS

We are interested in constructing effective models for thagion laws behind chaotic dynam-
ical data. We follow the framework in Qin et al. (2019) and Fuale (2020) for learning fully-
and partially-observed dynamical systems via residual BNte following review closely fol-
lows that of Churchill et al. (2022). Throughout this paper discussion will be on dynamical
systems observed over discrete time instances with a curistee stepAt,

to<tp <---, tht1 —tn = At,  Vn. (1)

Generality is not lost with the constant time step assumpts the variable time step can be
treated as a separate entry to the DNN structure (Qin et@G21&). We will use a subscript to
denote the time variable of a function, exg,, = x(t,,).

2.1 ResNet Modeling of Fully-Observed Systems

Consider an unknown autonomous system,

d

—=fx), xeR, )
wheref : R? — R? is not known. Because it is autonomous, its flow map depeniysoorthe
time difference as opposed to the actual time, kg.= ®;, _;_(x,). Thus, the solution having
been marched forward one time step satisfies

Xn+1 = (I)At (xn) =Xy, + lI’At (Xn)a (3)

whereW o, = ®5; — I, with I as the identity operator.
When data for all of the state variablever the time stencil (1) are available, they can be
grouped into sequences,

{x(™(0),x"™) (At), ..., x™ (KAL)}, m=1,...,M,

whereM is the total number of such data sequencesfnd 1 is the length of each sequence
(which is assumed to be a constant for notational convea)efithis serves as the training
dataset. Inspired by basic numerical schemes for solving€Bne can model the unknown
evolution operator using a residual network (ResNet) (Hd.e2016) in the form of

yo' =1+ N](y™), (4)

whereN : R? — R9 stands for the mapping operator of a standard feedforwélddonnected
neural network. The network is then trained by using theningi dataset and minimizing the
recurrent mean squared loss function

L3S emsan - e N o) ®

m=1k=1

where[I + NJ* indicates composition of the network functiértimes. Recurrent loss is used
to increase the stability of the network approximation deeig-term prediction. The trained
network thus accomplishes

xM(kAt) = [T+ NJFx™(0), Vm=1,....M, k=1,... K.
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After the network is trained to a satisfactory accuracy lleivean then be used as a predictive
model,
Xn+1 :Xn+N(xn)7 n= Oa 17"'7 (6)

starting from any initial conditiox (). This framework was proposed in Qin et al. (2019) and
was extended to parametric systems and time-dependerduyfmmomous) systems (Qin et al.,
2021a,b).

2.2 Memory-Based ResNet Modeling of Partially-Observed Systems

A notable extension of the flow-map modeling in Qin et al. (@0t to partially-observed sys-
tems where some state variables are not observed at ak ket(z; w), wherez € R™ and
w € R4, Let z be the observables and be the missing variables. That is, no information
or data ofw are available. When data are available only#pit is possible to derive a system
of equations for only via the Mori—-Zwanzig formulation (Mori, 1965; Zwanziy973). How-
ever, the Mori—-Zwanzig formulation asserts that the redugestem forz requires a memory
integral, whose kernel function, along with other termdia tormula, is unknown. By making a
mild assumption that the memory is of finite (problem-depeplength, memory-based DNN
structures were investigated in Wang et al. (2020) and FL @&G@20). While Wang et al. (2020)
utilized LSTM networks, Fu et al. (2020) proposed a reldyiwemple DNN structure, in direct
correspondence to the Mori—Zwanzig formulation, that sakke following mathematical form,

Zp4+1 = Zp, + N(Zn; Zp—1,- .- azn—nM)v n Z nar, (7)

wheren,; > 0 is the number of memory terms in the model. In this case, kBl Dperator is
N : Rmx(rv+1) _, R™ which corresponds to a ResNet with additional time histoputs.
The special case of,; = 0 corresponds to the standard ResNet model (6) for modalihg f
observed systems without missing variables (thus no needdmory).

In the case ofn = 1, Takens’ theorem (Takens, 1981) proves (nonconstriglitiee exis-
tence of a map fron&" : R*+1 — R such that,, ;1 = F(zp, .-, Zn_n,, ) Providedn,, > 2d.
This serves as inspiration that, given enough data, a salapproximator can find this map.
However, in this paper we consider many valuesfocorresponding to different combinations
of observed variables.

3. COMPUTATIONAL FRAMEWORK

In the main task of this paper, we apply the flow map learninthods described in the previous
section to chaotic systems. First, we review the settinguding the DNN structure used as
well as the specifics of the data generation and model tiguitNiext, we discuss the qualitative
and quantitative metrics to evaluate the flow map learningthWgn present extensive numerical
results for learning fully- and partially-observed Loresystems.

3.1 DNN Structure

The structure of the DNNs used to achieve chaotic flow mamiegris modeled by Eq. (7)
(Fu et al., 2020). The network functidN : R™*(»+1) _ R™ maps the input time history
of the observed variables to the output future time througierdes of fully-connected (also
known as dense) layers with ReLU activation. An illustratiaf this structure with memory
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lengthn,; = 2 is shown in Fig. 1. Note that this structure is general irt thiaile it is built
for partially-observed systems that require memory basethe Mori-Zwanzig formulation,
setting the memory length,;; = O returns a standard ResNet that is appropriate for learning
fully-observed systems. Our extensive numerical experiaton and previous work with this
framework indicate that particularly wide or deep netwaakes not typically necessary for learn-
ing with this structure, and hence most examples in this ppape three hidden layers with 20
neurons in each layer. The choice of memory lengthis in general problem-dependent and
hinges on a number of factors including the time step anddla¢ionship between the observed
and missing variables, and is explored in detail in Fu et2620). If the memory length is too
short, accuracy suffers because there is still missingnmdégion. If the memory length is too
long, the number of trainable parameters in the networkegmes as does the difficulty of the
optimization to usefully utilize all of the inputs, which rcalso result in a loss of accuracy.
Therefore, in practice it requires thorough testing and ehadmparison to find an appropriate
memory length. In the examples in this paper, there are &jlgiaroundn;; = 10 time steps
(equivalent to 0.1 s in time as discussed below).

3.2 Data Generation and Model Training

For benchmarking purposes, in all examples the true chagstems we seek to approximate
are known. However, these true models serve only two pugp@seto generate synthetic data
with which to train the DNN flow map approximations, and (2)g&nerate reference solutions
for comparison with DNN predictions in testing. Therefattege knowledge of the true system
does not in any way facilitate the DNN model approximation.

Data generation for both of these tasks is achieved by spthia true systems using a high-
order numerical solver, and observing this reference it discrete time steps witht =
0.01 s. To generate the training data, a single initial diowix(0) generates a long trajectory
fromt = 0tot = 10,000 s (1,000,000 time steps). From this long trajectbfysequences of
lengthn,; + K + 1 are collected uniformly at random to form the training data

{x(m) Lxm xglm) xm o xm) m=1,..., M, (8)

n—npr » n—1 » *n+1 YO+ K I

wheren,, is the memory length anHl is the recurrent loss parameter. In our examples, typically
M = 10,000 and< = 10time steps (equivalentto 0.1 s). For systems requiringong data are

Input

z, ) N Output

FIG. 1. Memory-based DNN structure
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generated from the full true system for all state varialdlewith only the data for the observed
state variableg being kept and data for the missing variabke®eing discarded.

Once the training dataset has been generated, the leaaskdgstachieved by training the
DNN model (7) with the data set (8). In particular, the netvbyperparameters (weights and
biases) are trained by minimizing the recurrent loss fomgti

£

m=1k=1

2

X = L+ NP x| (9)

)N —npr

wherel,, (X, - . ., Xn—n, ) = Xn, Using the stochastic optimization method Adam (Kingma and
Ba, 2014). In the examples below we typically train for 1@@pochs with batch size 50 and a
constant learning rate of 18 in Tensorflow (Abadi et al., 2015).

3.3 DNN Prediction and Validation

After satisfactory network training, we obtain a predietmodel (7) for the unknown system
which can be marched forward in time from any new initial citiod. To validate the network
prediction, testing data are generated in the same manmiriag data above. In particular, a
newinitial condition generates a reference solution from 0 tot = 100 s (10,000 time steps)
using the true governing equations. For prediction, the Diddlel is marched forward starting
with the firstn,, + 1 time steps of the test trajectory until= 100 and is compared against
the reference. Note that we march forward significantly &mtpan K At (the length of each
training sequence which is typicalty= 0.1) to examine the long-term system behavior.

For chaotic systems, it is practically impossible to apprate the flow map with a model
that achieves low pointwise error in the long term due to @t fhat even machine epsilon
changes in the initial condition or other system parametdsirastically change the evolution
of the system. However, these changes will not alter theiptys the system, i.e. the nature of
the behavior of the system. Hence, in this study, we recegthie challenge of low long-term
pointwise error and focus on learning the physics of theesgdb match the chaotic behavior. In
particular, we look at a myriad of qualitative and quaniti&ametrics in order to demonstrate a
strong match of physics including pointwise error, phase, plistogram, autocorrelation func-
tion, correlation dimension, approximate entropy, andpwev dimension. These tools have
been used to classify chaotic behavior in Lorenz and otheotahsystems, e.g., in Bakker et al.
(2000), Chattopadhyay et al. (2020), Kim et al. (1999), andyret al. (2019). We briefly review
each of the evaluation tools below. All metrics are computgdg MATLAB (MATLAB, 2022).

e Pointwise error: In the following examples, we look at thierence test trajectories ver-
sus the trajectories predicted by the network model. How#ve predictions will quickly
deviate from the reference trajectories since the dynawéckearn are in fact an approx-
imation and at best some small perturbation away from tredgmamics. For a chaotic
system, this small perturbation causes drastic changeéshwtay bounded, in the system
later in time. Hence, we can also look at the log absolute between the trajectories, and
check that this quantity remains bounded. Bounded poietetisor demonstrates stability
of the predictive model.

TFor that matter, even the reference trajectories themseheejust an approximation of the unknown true
trajectories as they are generated with a high-order ngaiesolver rather than analytically solving the
system.
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e Phase plot: We also qualitatively compare the phase platsfefence and predicted test

trajectories when multiple state variables are observéis Tan serve as a qualitative
measure of the behavior of the system, e.g., if both systehibietwo attractors centered
at the same patrticular points.

Histogram: We compare the approximate densities of reéeramd predicted values for
the trajectories as well, where a match in the distributioidates similar behavior in
the long term. The histograms are computed over all timesssggrting with the initial
condition.

The autocorrelation function (Box et al., 2015) measures the correlation between the
time seriese; and its lagged counterpart. ., wherek =0, ..., K andz; is a stochastic
process. The autocorrelation for lags defined asy = ¢ /co where

Cp =

T—k
Z(Sﬂt = I)(Ttk — T), (10)
=1

Nl

andc is the sample variance of the time series, witthe mean of the time series afid
the length of the time series. In our implementation, thegamutocorrelation is com-
puted by MATLAB’s Econometrics Toolbox (The MathWorks, 2@ using the default
settings. See this lifkfor further computational details.

Thecorrelation dimension (Theiler, 1987) is a measure of chaotic signal complexity in
multidimensional phase space. Specifically, it is a measfitee dimensionality of the
space occupied by a set of random points, whereby a higheglatbon dimension repre-
sents a higher level of chaotic complexity in the systens ttdmputed by first generating
a delayed reconstructidri. y with embedding dimensiom (in our implementatiomn is

set to be the dimension of the full system regardless of véndlie system is partially- or
fully-observed) and lag of reference or predicted trajectories assembled in a matri
The number of within range points, at poinis calculated by

N
Ni(R)= > Y- Yile < R), (11)
i=1,i#k

where 1 is the indicator functior? is the radius of similarity, andv is the number of
points used to computB. The correlation dimension is the slope®tR) vs. R, where
the correlation integral is defined as

C(R) = NN -1 ZNz(R) (12)

In our implementation, the correlation dimension is coreputy MATLAB’s Predictive
Maintenance Toolbox (The MathWorks, 2022b) using defaattirsgs (e.g., forV andR).
See this link for further computational details.

*https://ww.mathworks.com/help/econ/autocorr.html
Shttps:/Aww.mathworks.com/help/predmaint/ref/caatiEindimension.html
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e Theapproximate entropy (Pincus, 1991) is a measure used to quantify the amount of
regularity and unpredictability of fluctuations over a rinahr time series. It is computed
as®,, — ®,,1, Wwhere

N—m-+1
Op=(N—m+17" Y log(Ni(R)), (13)
=1
wherem, N, R, andN;(R) are defined as above when discussing correlation dimension
using the same delayed reconstruction. In our implememathe approximate entropy
is computed by MATLAB's Predictive Maintenance Toolbox €rMathWorks, 2022b)
using default settings. See this lihkwhich contains a working example of the Lorenz 63
system, for further computational details.

e Thelyapunov exponent (Rosenstein et al., 1993) characterizes the rate of sépat
infinitesimally close trajectories in phase space to digtish different attractors, which
can be useful in quantifying the level of chaos in a systemositive Lyapunov exponent
indicates divergence and chaos, with the magnitude iridiz#te rate of divergence. For
some point, the Lyapunov exponent is computed using the same delagedst&uction
Y1.y as the correlation dimension and approximate entropy as

Kmax

1. |Yigx — Yi-ykll2
ZIn : 14
D N I 4

1
(Kmax_ Kmin + 1)dt K

(i) =

whereKmin and Knax represent the expansion rangejs the sample time (equal tht =
0.01 in our case), and is the nearest neighbor point fosatisfying a minimum sep-
aration. A single scalar for the Lyapunov exponent is themmated as the slope of a
linear fit to theA(4) values. In our implementation, the Lyapunov exponent is mated

by MATLAB's Predictive Maintenance Toolbox (The MathWork922b) using sampling
frequency of 100 (corresponding ot = 0.01) and otherwise default settings. See this
link!, which also contains a working example of the Lorenz 63 syster computational
details.

We note that while the computational specifics of each ofdleluation tools are in fact
tunable and indeed changing them would yield different&s]the comparisons that follow are
not confined to accuracy for these particular defaultimgetation choices and we present them
simply as an example of one configuration.

4. COMPUTATIONAL RESULTS

In this section we provide numerical examples of DNN modgbih chaotic systems. We focus
on two well-known systems: the three-dimensional Lorensggem and the 40-dimensional
Lorenz 96 system. In each system, we start with the learnfrfglly-observed variables to
demonstrate the effectiveness of ResNet learning. We theusfon partially-observed cases.
For the three-dimensional Lorenz 63 system, we examine Mig [Barning using training data
of (different combinations of) only two variables, as wedl @af only one variable. For the 40-
dimensional Lorenz 96 system, we examine the DNN learningnadmly three variables are
observed in the training data.

Thttps://ww.mathworks.com/help/predmaint/ref/appmeateentropy.html
https:/Avww.mathworks.com/help/predmaint/ref/lyapuexponent.html
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4.1 Low-Dimensional System: Lorenz 63
The Lorenz 63 system is a nonlinear deterministic chaoteatfdimensional system,

dx

dt = O-(y_x)v

d

G-y, (15)
d

d_j; =Ty — Bza

whereo, p, andp are parameters. It was proposed in Lorenz (1963) as a sietplifiodel for
atmospheric convection. When = 10, p = 28, andp} = 8/3, the system exhibits chaotic
behavior and is a widely studied case.

4.1.1 Example 1: Full Three-Dimensional System

In this example all three state variablesy, andz are observed and stored in the training data
set. In particular, a trajectory is generated by a high-ondenerical solver and observed at every
At = 0.01 starting from the initial conditiotwo, yo, 20) = (1,1,1) until T = 10,000 s. From
this long trajectory, 10,000 data sequences of length 011 sifhe steps) are taken as training
data, which allows 10 steps to be used for recurrent lossaddstrd ResNet with three hidden
layers with 20 neurons each is used, and the mean squaredamdoss function is minimized
using Adam with a constant learning rate of £@or 10,000 epochs.

Prediction is carried out td" = 100 s (10,000 time steps) from a new initial condition
(10, 10, 20). Figure 2 shows the trajectory prediction as well as the lisphute error. We see that
despite how the prediction trajectories quickly deviatefithe reference trajectories (as should
be expected for a chaotic system), the pointwise error ithadle variables remains bounded
over the long term. In addition, Figs. 3-5 show qualitagn&@milar phase plots, histograms, and
autocorrelation functions, with at worst the quantitativeos statistics of 9% in relative error.
See Table 1 for details.

4.1.2 Example 2: Reduced One- or Two-Dimensional Systems

In this example we consider the six possible combinationgadially-observed systems arising
from Lorenz 63. Specifically, we consider observing two abies of onlyz andy, only x and
z, and onlyy and z, as well as one variable of only, only y, and onlyz. When variables are
missing, the Mori—Zwanzig formulation informs us that megnis required to learn the reduced
system dynamics. Hence, in all of the following experimemtsajectory of the full Lorenz
system is generated by a high-order numerical solver andldberved variables are observed at
everyAt = 0.01 starting from the initial conditiofl, 1, 1) until " = 10,000 s. (The unobserved
variables are discarded from the true system solutionsinRhis long trajectory, 10,000 data
sequences of length 0.2 s (21 time steps) are taken fromlomlgtiserved variable(s) as training
data. This allows 0.1 s (10 steps) for memory and 0.1 s (1&xsfeprecurrent loss. A standard
ResNet with three hidden layers and 20 neurons each is usédha mean squared recurrent
loss function is minimized using Adam with a constant leagniate of 102 for 10,000 epochs.
Prediction for the observed variables is carried outf'te- 100 s (10,000 time steps) from
a new initial condition(10, 10, 20), with the corresponding observables in different cases. Th
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. 1: Lorenz 63 full system—individual trajectory compsanm and pointwise error
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FIG. 3: Ex. 1: Lorenz 63 full system—phase plots (left: referengghtt DNN prediction)

two-variablex andy system is shown in Figs. 6-9. We see bounded pointwise erdarating
stability, qualitatively similar run in phase plots indiray similar behavior, a similar histogram
indicating the appropriate density, and chaos statisticg #lose to the reference.
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FIG. 5: Ex. 1: Lorenz 63 full system—autocorrelation function carigon

The one-variable system is shown in Figs. 10 and 11. Once again we see bounde po
wise error, similar histograms and autocorrelation fuoreti and very accurate chaos statistics.
The correlation dimension, approximate entropy, and Lyapexponent values for all of the
combinations of observed variables are reported in Tabld@.predicted statistics are at worst
17.5% off from the reference statistics in relative errai, dre typically significantly lower, and
we note that in the few cases where relative error exceedsitLidonly in one of the three
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TABLE 1: Ex. 1: Lorenz 63 full system—metrics for chaotic behaviomgarison

Metrics Reference Solution  DNN Prediction  Relative Error
Correlation dimension 1.9924 2.1722 9.0%
Approximate entropy 0.0435 0.0441 1.4%

Lyapunov exponent 0.5504 0.5534 0.5%

individual trajectories
25 T T T T

*  predicted x |
O predctedy [
referance x

1
e

0 10 20 30 40 50 &0 70 80 90 100
time (seconds)
error

10—5 [ 1 1 1 1 L 1 1 L 1
0 10 20 30 40 50 80 70 80 90 100

time (seconds)

FIG. 6: Ex. 2: Lorenz 63 reduced systemmoandy—individual trajectory comparison and pointwise error

statistics with the other two being much more accurate. kamgple, we see that the reduced
system ofr andz has a relative error in Lyapunov exponent of 17.5%, but nestcorrelation
dimension and approximate entropy at relative errors d¥0ahd 3.0%.

4.2 High-Dimensional System: Lorenz 96

The Lorenz 96 system (Lorenz, 1996) is Ardimensional dynamical system given by

dx i
dt

= (41— Ti—2)Ti—1 + F, (16)
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reference phase plot predicted phase plot
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FIG. 7: Ex. 2: Lorenz 63 reduced systemmoandy—phase plots (left: reference; right: DNN prediction)
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FIG. 8: Ex. 2: Lorenz 63 reduced systemaoandy—histogram comparison

fori =1,...,N,for N > 4wherex_; = zny_1, xo = zn, Tni1 = 21, andF is a forcing
parameter. IfFF = 8, the system exhibits chaotic behavior. In the exampleswele choose
N =40 as in Lorenz and Emanuel (1998).
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4.2.1 Example 3: Full 40-Dimensional System

In this example all 40 state variables are observed. Inqudati, a trajectory is generated by a
high-order numerical solver with¢ = 0.01 from the initial conditior{8.0081 8, 8, .. ., 8) until
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FIG. 11: Ex. 2: Lorenz 63 reduced systemsf-histogram and autocorrelation function comparison

T = 10,000 s (1,000,000 time steps). From this long trajectt®®,000 chunks of length 0.1 s
(11 time steps) are taken as training data. This allows Jisgtebe used for recurrent loss. A
standard ResNet with three hidden layers with 200 neurotts isaused, and the mean squared
recurrent loss function is minimized using Adam with a canstearning rate of 16 for 2000
epochs.

Prediction is carried out td” = 500 (50,000 time steps) from the new initial condition
(8.01,8,8,...,8). Figure 12 shows the prediction results for 450 throught = 500 with the
ith row corresponding to the trajectory of the variable We see the same type of qualitative
behavior in the reference and prediction, with wavelikarfeflowing through the 40 variables.
Table 3 shows the correlation dimension, approximate pyt@nd Lyapunov exponent for this
experiment. As in Ex. 2, we note that while the relative efosrapproximate entropy is very
high at 46.3%, we consider that it may be an anomaly as the tthestatistics are significantly
more accurate at 3.1% and 3.5%.

4.2.2 Example 4: Reduced Three-Dimensional System

In this example we consider observing only, x,, andxzs from the 40-dimensional Lorenz 96
system. Again, Mori—Zwanzig informs us that memory is regdito learn the reduced system
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TABLE 2: Ex. 2: Lorenz 63 reduced systems—metrics for chaotic behnaeimparison

Metrics Reference Solution DNN Prediction Relative Error
(z, y)
Correlation dimension 2.0903 1.9747 5.5%
Approximate entropy 0.0705 0.0707 0.3%
Lyapunov exponent 5.6830 5.8369 2.7%
(z, 2)
Correlation dimension 2.1484 2.1472 0.1%
Approximate entropy 0.0796 0.0820 3.0%
Lyapunov exponent 4.6859 5.5066 17.5%
(y, 2)
Correlation dimension 2.2618 2.1986 2.8%
Approximate entropy 0.0564 0.0571 1.2%
Lyapunov exponent 3.1263 3.5128 12.4%
()
Correlation dimension 2.0160 1.8821 6.6%
Approximate entropy 0.1956 0.1986 1.5%
Lyapunov exponent 27.0396 27.3691 1.2%
(v)
Correlation dimension 1.7573 1.7979 2.3%
Approximate entropy 0.2053 0.2027 1.3%
Lyapunov exponent 29.1866 29.5374 1.2%
(2)
Correlation dimension 1.7916 1.8037 0.7%
Approximate entropy 0.2171 0.1940 10.6%
Lyapunov exponent 26.1375 25.7496 1.5%

FIG. 12: Ex. 3: Lorenz 96 full system—individual trajectory comzam

dynamics. Hence, a trajectory of the full system is gendrhtea high-order numerical solver
with At = 0.01 from the initial conditior(8.0081 8,8, ...,8) until T = 10,000 s. From this
long trajectory, 10,000 chunks of length 1.1 s (111 time stepe taken from only the observed
variables as training data. This allows 1 s (100 time sters)nemory and 0.1 s (10 time steps)
for recurrent loss. A standard ResNet with ten hidden lagas20 neurons each is used, and
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TABLE 3: Ex. 3: Lorenz 96 full system—metrics for chaotic behaviomgarison

Metrics Reference Solution  DNN Prediction  Relative Error
Correlation dimension 1.4025 1.3585 3.1%
Approximate entropy 0.0067 0.0036 46.3%

Lyapunov exponent 0.2419 0.2506 3.6%

the mean squared recurrent loss function is minimized usdagm with a constant learning rate
of 103 for 10,000 epochs.

Prediction is carried out td” = 100 (10,000 time steps) from the new initial condition
(8.01,8,8,...,8). Figure 13 shows the individual trajectories betweea 80 andt = 100 s
along with bounded pointwise error, which again indicates gtability of the prediction. Fig-
ure 14 shows the phase plots and quantitative measure® Rigs. 15 and 16 show the histo-
gram and autocorrelation function comparisons. Due toitiréfcantly more chaotic and com-
plex nature of the Lorenz 96 system, it is now more difficulpitk out identifying characteristics
in the trajectories and phase plots to compare. Nevertheles chaos statistics reported in Ta-
ble 4 indicate a strong match with only one of three statistikceeding 10% relative error.

individual trajectories
T T T
predicted x
y predicted x 2

predicted x 3

reference x,

reference x,, [
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82 84 86 88 90 92 94 96 98 100
time (seconds)

error
102 E T T T T T

.\M ‘ ”

it

‘\I

Py

\(

1
Q 10 20 30 40 50 60 70 80 90 100
time (seconds)

FIG. 13: Ex. 4: Lorenz 96 reduced system:of, x2, zz3—individual trajectory comparison and pointwise
error
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reference phase plot
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FIG. 14: Ex. 4: Lorenz 96 reduced systemof, x2, zz—phase plots (left: reference; right: DNN predic-
tion)
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FIG. 15: Ex. 4: Lorenz 96 reduced systemaof, z», x3—histogram comparison

5. CONCLUSION

We have presented a systematic and rigorous examinaticgaofihg the flow maps of fully-
and partially-observed chaotic systems using an approslRaNN framework. While in most
papers that examine this topic, pointwise error or a visoatgarison of phase plots are used
to assess the accuracy of network prediction, here we use tels as well as a variety of

Volume 3, I'ssue 3, 2022



116 Churchill & Xiu

aulocorrelation(x1) autocorrelation(x
T T T T

2

1r 1
‘\, reference \ reference
05 Ll predicted | | 05\ predicted | |
0 2= 0 /N E N
N7 7 -
-05 L L L Il 05 L 1 1 !
0 2 4 6 8 10 0 2 4 6 8 10
lag (seconds) lag (seconds)
aulocorrelation(xB)
1y T T T
\ reference
0.5 *\ predicted | _|
ol .‘ & 3 y Yz < N — \ ’{,_’ ~ e
-05 I I L 1
0 2 4 6 8 10
lag (seconds)

FIG. 16: Ex. 4: Lorenz 96 reduced systemuof, z», xz—autocorrelation function comparison

TABLE 4: Ex. 4: Lorenz 96 reduced system—metrics for chaotic bemaaimparison

Metrics Reference solution  DNN prediction Relativeerror
Correlation dimension 1.2310 1.1925 3.1%
Approximate entropy 0.1177 0.1332 13.1%

Lyapunov exponent 16.1671 17.1356 6.0%

other measures to demonstrate accurate long-term chadtavior prediction. Our numerical
examples show that this DNN framework is able to learn largatchaotic behavior even when
systems are severely underobserved and training datalbeted from a single initial condition.
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