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Recently, a general data-driven numerical framework was developed for learning and modeling of

unknown dynamical systems using fully- or partially-observed data. The method utilizes deep neu-

ral networks (DNNs) to construct a model for the flow map of the unknown system. Once an ac-

curate DNN approximation of the flow map is constructed, it can be recursively executed to serve

as an effective predictive model of the unknown system. In this paper, we apply this framework to

chaotic systems, in particular the well-known Lorenz 63 and 96 systems, and critically examine

the predictive performance of the approach. A distinct feature of chaotic systems is that even the

smallest perturbations will lead to large (albeit bounded) deviations in the solution trajectories. This

makes long-term predictions of the method, or any data-driven methods, questionable, as the local

model accuracy will eventually degrade and lead to large pointwise errors. Here we employ several

other qualitative and quantitative measures to determine whether the chaotic dynamics has been

learned. These include phase plots, histograms, autocorrelation, correlation dimension, approximate

entropy, and Lyapunov exponent. Using these measures, we demonstrate that the flow map based

DNN learning method is capable of accurately modeling chaotic systems, even when only a subset

of the state variables is available to the DNNs. For example, for the Lorenz 96 system with 40 state

variables, when the data of only three variables are available, the method is able to learn an effective

DNN model for the three variables and produce accurately the chaotic behavior of the system.
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1. INTRODUCTION

Due to recent advances in machine learning software and computing hardware combined with
the availability of vast amounts of data, data-driven learning of unknown dynamical systems
has been a very active research area in the past few years. Oneway to approach this problem
is governing equation discovery, where a map is constructedfrom state variables to their time
derivatives. Among other techniques, this can be achieved via sparse approximation, where under
certain circumstances exact equation recovery is possible. See, for example, Brunton et al. (2016)
and its many extensions in recovering both ODEs in Brunton etal. (2016), Kang et al. (2019),
Schaeffer and McCalla (2017), Schaeffer et al. (2018), and Tran and Ward (2017) and PDEs in
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Rudy et al. (2017) and Schaeffer (2017). Deep neural networks (DNNs) have also been used to
construct this mapping. See, for example, ODE modeling in Luet al. (2021b), Qin et al. (2019),
Raissi et al. (2018), and Rudy et al. (2019) and PDE modeling in Long et al. (2018a,b), Lu et al.
(2021a), Raissi et al. (2017a,b), Raissi (2018), and Sun et al. (2019).

Another approach for learning unknown systems, our focus here, is flow map or evolution
discovery, where a map is constructed between two system states separated by a short time to
approximate the flow map of the system (Qin et al., 2019). Unlike governing equation discovery,
approximating the flow map does not directly yield the specific terms in the underlying equa-
tions. Rather, if an accurate flow map is discovered, then an accurate predictive model can be
defined for the evolution of the unknown system such that a newinitial condition can be marched
forward in time. This approach relies on a DNN, in particulara residual network (ResNet) (He
et al., 2016), to approximate the flow map. Since its introduction in Qin et al. (2019) to model au-
tonomous systems, a general framework has been developed for the flow map approximation of
unknown systems from their trajectory data that extends to nonautonomous systems (Qin et al.,
2021a), parametric dynamical systems (Qin et al., 2021b), partially observed dynamical systems
(Fu et al., 2020), as well as partial differential equations(Chen et al., 2022; Wu and Xiu, 2020).
Of particular interest in this paper is Fu et al. (2020), where a finite memory of the state variable
time history is used to learn reduced systems where only someof the state variables are observed
per the Mori–Zwanzig formulation.

The focus of this paper is to extend this flow map deep learningframework tochaotic sys-
temsand examine its performance for both fully and partially observed chaotic systems. Chaotic
systems exhibit ultrasensitivity to perturbations of the system parameters and initial conditions.
Hence, they represent a highly challenging case for any learning and modeling methods, partic-
ularly for long-term system behavior. Although well known chaotic systems, e.g., the Lorenz 63
system, have been adopted in the literature, they were mostly used as demonstrative examples of
the proposed methods in the papers by using visual examination of phase plots. The nearly im-
possible task of matching the long-term evolution of the true chaotic system is rarely addressed
in the existing literature. With an exclusive focus on chaotic systems, the purpose of this paper
is to systematically examine the long-term predictive accuracy using a set of measures beyond
phase plots. These include bounded pointwise error, histograms, autocorrelation functions, cor-
relation dimension, approximate entropy, and Lyapunov exponent. Using these measures, we
further establish that the flow map based deep learning method is capable of learning and mod-
eling chaotic systems and producing accurate long-term system predictions, for both fully- and
partially-observed systems.

1.1 Literature Review

The problem of learning fully- and partially-observed chaotic systems, especially the famous
Lorenz 63 system, has been a popular topic particularly in the age of machine learning. Hence,
we limit the scope of this review to papers particularly relevant to the subject of learning chaotic
dynamics.

The recent paper by Bhat and Munch (2022) is most similar to this work in that the au-
thors seek to learn partially-observed chaotic dynamics using memory. This paper considers
observing just one variable, while we consider many combinations of partially-observed vari-
ables, and focuses on optimizing the network parameters (e.g., number of neurons and memory
length) of a particular recursive structure based on root mean squared error (RMSE), while we
consider additional measures of chaotic dynamics and a general ResNet. There are also several
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other relevant papers including Trischler and D’Eleuterio(2016), which uses a recurrent neural
network to predict chaotic systems including Lorenz 63. In Wulkow et al. (2021), the authors
discuss memory length and Takens’ theorem (Takens, 1981) inthe context of learning Lorenz
96. In addition, Scher and Messori (2019) consider approximating chaotic dynamical systems
using limited data and external forcing. Also, Vlachas et al. (2018), Pawar et al. (2021), Chat-
topadhyay et al. (2020), and Dubois et al. (2020) use long short-term memory (LSTM) recurrent
networks to study fully- and partially-observed Lorenz systems.

There are also several earlier papers, including Zimmermann and Neuneier (2000) which
proposes modeling dynamical systems via recurrent neural networks, Kim et al. (1999) which
deals with estimating time delays (memory length) in Lorenzand other systems, Bakker et al.
(2000) that learns chaotic dynamics of reduced systems via neural networks, Miyoshi et al.
(1995) which learns chaotic dynamics with neural networks,and Han et al. (2004a,b), which
predict the chaotic Rossler system using a simple RNN. Thesepapers are certainly relevant, but
lack the extensive examples and systematic verification experiments that are now more easily
achieved with today’s computing systems.

It is also worth mentioning a large body of work that uses a different approach (governing
equation discovery) to learning chaotic systems. In Brunton et al. (2016), the authors approxi-
mate the particular terms in chaotic systems (the right-hand sides) through sparse optimization
or network learning. Other work in this area includes Brunton et al. (2017) and Lusch et al.
(2018) which focus on learning delayed embeddings, Raissi et al. (2018) which uses physics-
informed neural networks, Pan and Duraisamy (2018), which explicitly learns the closure of the
partially observed Lorenz 63 system via a NN, Champion et al.(2019) which combines learn-
ing a coordinate transform from the delayed embedding coordinates with learning the dynamic
coordinates of chaotic systems, Rudy et al. (2019) which learns the Lorenz system from noisy
data, and Bakarji et al. (2022) which learns the governing equations for Lorenz (or a Lorenz-like
surrogate) from just one observation variable.

1.2 Contributions

The chief contribution of this paper is a systematic and rigorous examination of learning the
flow maps of fully- and partially-observed chaotic dynamical systems using an approachable
and mathematically grounded DNN framework. In most papers dealing with this topic, point-
wise error or a visual comparison of phase plots is used to assess the accuracy of network pre-
diction. However, it is well known that chaotic systems are extremely sensitive to perturbation,
and therefore in the long run the model predictions will dramatically stray from the truth. This
makes assessing the efficacy of the learned system, particularly for long-term, a challenging
problem in and of itself. Hence, part of our contribution is the proposal of a more robust ap-
proach to the assessment of learning chaotic behavior not explored in the existing literature
that includes standard techniques of error analysis such aspointwise error and phase plots as
well as comparison of a variety of other measures that demonstrate accurate behavior, including
matching of histograms and autocorrelation, and statistics that quantify chaos such as correlation
dimension, approximate entropy, and Lyapunov exponent. Finally, we contribute several ambi-
tious numerical examples not explored in the literature. Asa benchmark, we consider learning
the well-known Lorenz systems with different combinationsof observed variables. Of partic-
ular note is a 40-dimensional Lorenz 96 system with only three variables observed, where we
demonstrate that the DNN method can learn the chaotic behavior in general despite training data
being collected from a single long trajectory consisting ofonly three variables (out of 40).
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2. FLOW MAP MODELING OF UNKNOWN CHAOTIC DYNAMICAL SYSTEMS

We are interested in constructing effective models for the evolution laws behind chaotic dynam-
ical data. We follow the framework in Qin et al. (2019) and Fu et al. (2020) for learning fully-
and partially-observed dynamical systems via residual DNNs. The following review closely fol-
lows that of Churchill et al. (2022). Throughout this paper our discussion will be on dynamical
systems observed over discrete time instances with a constant time step∆t,

t0 < t1 < · · · , tn+1 − tn = ∆t, ∀n. (1)

Generality is not lost with the constant time step assumption, as the variable time step can be
treated as a separate entry to the DNN structure (Qin et al., 2021a). We will use a subscript to
denote the time variable of a function, e.g.,xn = x(tn).

2.1 ResNet Modeling of Fully-Observed Systems

Consider an unknown autonomous system,

dx

dt
= f(x), x ∈ R

d, (2)

wheref : Rd → R
d is not known. Because it is autonomous, its flow map depends only on the

time difference as opposed to the actual time, i.e.,xn = Φtn−ts(xs). Thus, the solution having
been marched forward one time step satisfies

xn+1 = Φ∆t(xn) = xn +Ψ∆t(xn), (3)

whereΨ∆t = Φ∆t − I, with I as the identity operator.
When data for all of the state variablesx over the time stencil (1) are available, they can be

grouped into sequences,

{x(m)(0),x(m)(∆t), . . . ,x(m)(K∆t)}, m = 1, . . . ,M,

whereM is the total number of such data sequences andK + 1 is the length of each sequence
(which is assumed to be a constant for notational convenience). This serves as the training
dataset. Inspired by basic numerical schemes for solving ODEs, one can model the unknown
evolution operator using a residual network (ResNet) (He etal., 2016) in the form of

yout = [I+N](yin), (4)

whereN : Rd → R
d stands for the mapping operator of a standard feedforward fully connected

neural network. The network is then trained by using the training dataset and minimizing the
recurrent mean squared loss function

1
M

M
∑

m=1

K
∑

k=1

∥

∥

∥
x(m)(k∆t) − [I+N]k(x(m)(0))

∥

∥

∥

2
, (5)

where[I + N]k indicates composition of the network functionk times. Recurrent loss is used
to increase the stability of the network approximation overlong-term prediction. The trained
network thus accomplishes

x(m)(k∆t) ≈ [I+N]k(x(m)(0)), ∀m = 1, . . . ,M, k = 1, . . . ,K.
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After the network is trained to a satisfactory accuracy level, it can then be used as a predictive
model,

xn+1 = xn +N(xn), n = 0, 1, . . . , (6)

starting from any initial conditionx(t0). This framework was proposed in Qin et al. (2019) and
was extended to parametric systems and time-dependent (nonautonomous) systems (Qin et al.,
2021a,b).

2.2 Memory-Based ResNet Modeling of Partially-Observed Systems

A notable extension of the flow-map modeling in Qin et al. (2019) is to partially-observed sys-
tems where some state variables are not observed at all. Letx = (z;w), wherez ∈ R

m and
w ∈ R

d−m. Let z be the observables andw be the missing variables. That is, no information
or data ofw are available. When data are available only forz, it is possible to derive a system
of equations forz only via the Mori–Zwanzig formulation (Mori, 1965; Zwanzig, 1973). How-
ever, the Mori–Zwanzig formulation asserts that the reduced system forz requires a memory
integral, whose kernel function, along with other terms in the formula, is unknown. By making a
mild assumption that the memory is of finite (problem-dependent) length, memory-based DNN
structures were investigated in Wang et al. (2020) and Fu et al. (2020). While Wang et al. (2020)
utilized LSTM networks, Fu et al. (2020) proposed a relatively simple DNN structure, in direct
correspondence to the Mori–Zwanzig formulation, that takes the following mathematical form,

zn+1 = zn +N(zn, zn−1, . . . , zn−nM
), n ≥ nM , (7)

wherenM ≥ 0 is the number of memory terms in the model. In this case, the DNN operator is
N : Rm×(nM+1) → R

m, which corresponds to a ResNet with additional time historyinputs.
The special case ofnM = 0 corresponds to the standard ResNet model (6) for modeling fully-
observed systems without missing variables (thus no need for memory).

In the case ofm = 1, Takens’ theorem (Takens, 1981) proves (nonconstructively) the exis-
tence of a map fromF : RnM+1 → R such thatzn+1 = F (zn, . . . , zn−nM

) providednM ≥ 2d.
This serves as inspiration that, given enough data, a universal approximator can find this map.
However, in this paper we consider many values form corresponding to different combinations
of observed variables.

3. COMPUTATIONAL FRAMEWORK

In the main task of this paper, we apply the flow map learning methods described in the previous
section to chaotic systems. First, we review the setting including the DNN structure used as
well as the specifics of the data generation and model training. Next, we discuss the qualitative
and quantitative metrics to evaluate the flow map learning. We then present extensive numerical
results for learning fully- and partially-observed Lorenzsystems.

3.1 DNN Structure

The structure of the DNNs used to achieve chaotic flow map learning is modeled by Eq. (7)
(Fu et al., 2020). The network functionN : Rm×(nM+1) → R

m maps the input time history
of the observed variables to the output future time through aseries of fully-connected (also
known as dense) layers with ReLU activation. An illustration of this structure with memory
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lengthnM = 2 is shown in Fig. 1. Note that this structure is general in that while it is built
for partially-observed systems that require memory based on the Mori–Zwanzig formulation,
setting the memory lengthnM = 0 returns a standard ResNet that is appropriate for learning
fully-observed systems. Our extensive numerical experimentation and previous work with this
framework indicate that particularly wide or deep networksare not typically necessary for learn-
ing with this structure, and hence most examples in this paper use three hidden layers with 20
neurons in each layer. The choice of memory lengthnM is in general problem-dependent and
hinges on a number of factors including the time step and the relationship between the observed
and missing variables, and is explored in detail in Fu et al. (2020). If the memory length is too
short, accuracy suffers because there is still missing information. If the memory length is too
long, the number of trainable parameters in the network increases as does the difficulty of the
optimization to usefully utilize all of the inputs, which can also result in a loss of accuracy.
Therefore, in practice it requires thorough testing and model comparison to find an appropriate
memory length. In the examples in this paper, there are typically aroundnM = 10 time steps
(equivalent to 0.1 s in time as discussed below).

3.2 Data Generation and Model Training

For benchmarking purposes, in all examples the true chaoticsystems we seek to approximate
are known. However, these true models serve only two purposes: (1) to generate synthetic data
with which to train the DNN flow map approximations, and (2) togenerate reference solutions
for comparison with DNN predictions in testing. Therefore,the knowledge of the true system
does not in any way facilitate the DNN model approximation.

Data generation for both of these tasks is achieved by solving the true systems using a high-
order numerical solver, and observing this reference solution at discrete time steps with∆t =
0.01 s. To generate the training data, a single initial condition x(0) generates a long trajectory
from t = 0 to t = 10,000 s (1,000,000 time steps). From this long trajectory,M sequences of
lengthnM +K + 1 are collected uniformly at random to form the training dataset

{x
(m)
n−nM

, . . . ,x
(m)
n−1,x

(m)
n ,x

(m)
n+1, . . . ,x

(m)
n+K}, m = 1, . . . ,M, (8)

wherenM is the memory length andK is the recurrent loss parameter. In our examples, typically
M = 10,000 andK = 10 time steps (equivalent to 0.1 s). For systems requiring memory, data are

FIG. 1: Memory-based DNN structure
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generated from the full true system for all state variablesx, with only the data for the observed
state variablesz being kept and data for the missing variablesw being discarded.

Once the training dataset has been generated, the learning task is achieved by training the
DNN model (7) with the data set (8). In particular, the network hyperparameters (weights and
biases) are trained by minimizing the recurrent loss function,

1
M

M
∑

m=1

K
∑

k=1

∥

∥

∥
x
(m)
n+k − [In +N]k(x(m)

n , . . . ,x
(m)
n−nM

)
∥

∥

∥

2
, (9)

whereIn(xn, . . . ,xn−nM
) = xn, using the stochastic optimization method Adam (Kingma and

Ba, 2014). In the examples below we typically train for 10,000 epochs with batch size 50 and a
constant learning rate of 10−3 in Tensorflow (Abadi et al., 2015).

3.3 DNN Prediction and Validation

After satisfactory network training, we obtain a predictive model (7) for the unknown system
which can be marched forward in time from any new initial condition. To validate the network
prediction, testing data are generated in the same manner astraining data above. In particular, a
newinitial condition generates a reference solution fromt = 0 to t = 100 s (10,000 time steps)
using the true governing equations. For prediction, the DNNmodel is marched forward starting
with the firstnM + 1 time steps of the test trajectory untilt = 100 and is compared against
the reference. Note that we march forward significantly longer thanK∆t (the length of each
training sequence which is typicallyt = 0.1) to examine the long-term system behavior.

For chaotic systems, it is practically impossible to approximate the flow map with a model
that achieves low pointwise error in the long term due to the fact that even machine epsilon
changes in the initial condition or other system parameterswill drastically change the evolution
of the system. However, these changes will not alter the physics of the system, i.e. the nature of
the behavior of the system. Hence, in this study, we recognize the challenge of low long-term
pointwise error and focus on learning the physics of the system to match the chaotic behavior. In
particular, we look at a myriad of qualitative and quantitative metrics in order to demonstrate a
strong match of physics including pointwise error, phase plot, histogram, autocorrelation func-
tion, correlation dimension, approximate entropy, and Lyapunov dimension. These tools have
been used to classify chaotic behavior in Lorenz and other chaotic systems, e.g., in Bakker et al.
(2000), Chattopadhyay et al. (2020), Kim et al. (1999), and Rudy et al. (2019). We briefly review
each of the evaluation tools below. All metrics are computedusing MATLAB (MATLAB, 2022).

• Pointwise error: In the following examples, we look at the reference test trajectories ver-
sus the trajectories predicted by the network model. However, the predictions will quickly
deviate from the reference trajectories since the dynamicswe learn are in fact an approx-
imation and at best some small perturbation away from the true dynamics.† For a chaotic
system, this small perturbation causes drastic changes, which stay bounded, in the system
later in time. Hence, we can also look at the log absolute error between the trajectories, and
check that this quantity remains bounded. Bounded pointwise error demonstrates stability
of the predictive model.

†For that matter, even the reference trajectories themselves are just an approximation of the unknown true
trajectories as they are generated with a high-order numerical solver rather than analytically solving the
system.
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• Phase plot: We also qualitatively compare the phase plots ofreference and predicted test
trajectories when multiple state variables are observed. This can serve as a qualitative
measure of the behavior of the system, e.g., if both systems exhibit two attractors centered
at the same particular points.

• Histogram: We compare the approximate densities of reference and predicted values for
the trajectories as well, where a match in the distribution indicates similar behavior in
the long term. The histograms are computed over all time steps starting with the initial
condition.

• The autocorrelation function (Box et al., 2015) measures the correlation between the
time seriesxt and its lagged counterpartxt+k, wherek = 0, . . . ,K andxt is a stochastic
process. The autocorrelation for lagk is defined asrk = ck/c0 where

ck =
1
T

T−k
∑

t=1

(xt − x̄)(xt+k − x̄), (10)

andc0 is the sample variance of the time series, withx̄ the mean of the time series andT
the length of the time series. In our implementation, the sample autocorrelation is com-
puted by MATLAB’s Econometrics Toolbox (The MathWorks, 2022a) using the default
settings. See this link‡ for further computational details.

• Thecorrelation dimension (Theiler, 1987) is a measure of chaotic signal complexity in
multidimensional phase space. Specifically, it is a measureof the dimensionality of the
space occupied by a set of random points, whereby a higher correlation dimension repre-
sents a higher level of chaotic complexity in the system. It is computed by first generating
a delayed reconstructionY1:N with embedding dimensionm (in our implementationm is
set to be the dimension of the full system regardless of whether the system is partially- or
fully-observed) and lagτ of reference or predicted trajectories assembled in a matrix X .
The number of within range points, at pointi, is calculated by

Ni(R) =
N
∑

i=1,i 6=k

1(‖Yi − Yk‖∞ < R), (11)

where 1 is the indicator function,R is the radius of similarity, andN is the number of
points used to computeR. The correlation dimension is the slope ofC(R) vs.R, where
the correlation integral is defined as

C(R) =
2

N(N − 1)

N
∑

i=1

Ni(R). (12)

In our implementation, the correlation dimension is computed by MATLAB’s Predictive
Maintenance Toolbox (The MathWorks, 2022b) using default settings (e.g., forN andR).
See this link§ for further computational details.

‡https://www.mathworks.com/help/econ/autocorr.html
§https://www.mathworks.com/help/predmaint/ref/correlationdimension.html

Journal of Machine Learning for Modeling and Computing



Deep Learning of Chaotic Systems from Partially-Observed Data 105

• The approximate entropy (Pincus, 1991) is a measure used to quantify the amount of
regularity and unpredictability of fluctuations over a nonlinear time series. It is computed
asΦm − Φm+1, where

Φm = (N −m+ 1)−1
N−m+1
∑

i=1

log(Ni(R)), (13)

wherem, N , R, andNi(R) are defined as above when discussing correlation dimension
using the same delayed reconstruction. In our implementation, the approximate entropy
is computed by MATLAB’s Predictive Maintenance Toolbox (The MathWorks, 2022b)
using default settings. See this link¶, which contains a working example of the Lorenz 63
system, for further computational details.

• TheLyapunov exponent (Rosenstein et al., 1993) characterizes the rate of separation of
infinitesimally close trajectories in phase space to distinguish different attractors, which
can be useful in quantifying the level of chaos in a system. A positive Lyapunov exponent
indicates divergence and chaos, with the magnitude indicating the rate of divergence. For
some pointi, the Lyapunov exponent is computed using the same delayed reconstruction
Y1:N as the correlation dimension and approximate entropy as

λ(i) =
1

(Kmax−Kmin + 1)dt

Kmax
∑

K=Kmin

1
K

ln
‖Yi+K − Yi∗+K‖2

‖Yi − Yi∗‖2
, (14)

whereKmin andKmax represent the expansion range,dt is the sample time (equal to∆t =
0.01 in our case), andi∗ is the nearest neighbor point toi satisfying a minimum sep-
aration. A single scalar for the Lyapunov exponent is then computed as the slope of a
linear fit to theλ(i) values. In our implementation, the Lyapunov exponent is computed
by MATLAB’s Predictive Maintenance Toolbox (The MathWorks, 2022b) using sampling
frequency of 100 (corresponding to∆t = 0.01) and otherwise default settings. See this
link||, which also contains a working example of the Lorenz 63 system, for computational
details.

We note that while the computational specifics of each of these evaluation tools are in fact
tunable and indeed changing them would yield different values, the comparisons that follow are
not confined to accuracy for these particular default implementation choices and we present them
simply as an example of one configuration.

4. COMPUTATIONAL RESULTS

In this section we provide numerical examples of DNN modeling of chaotic systems. We focus
on two well-known systems: the three-dimensional Lorenz 63system and the 40-dimensional
Lorenz 96 system. In each system, we start with the learning of fully-observed variables to
demonstrate the effectiveness of ResNet learning. We then focus on partially-observed cases.
For the three-dimensional Lorenz 63 system, we examine the DNN learning using training data
of (different combinations of) only two variables, as well as of only one variable. For the 40-
dimensional Lorenz 96 system, we examine the DNN learning when only three variables are
observed in the training data.
¶https://www.mathworks.com/help/predmaint/ref/approximateentropy.html
||https://www.mathworks.com/help/predmaint/ref/lyapunovexponent.html
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4.1 Low-Dimensional System: Lorenz 63

The Lorenz 63 system is a nonlinear deterministic chaotic three-dimensional system,

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

(15)

whereσ, ρ, andβ are parameters. It was proposed in Lorenz (1963) as a simplified model for
atmospheric convection. Whenσ = 10, ρ = 28, andβ = 8/3, the system exhibits chaotic
behavior and is a widely studied case.

4.1.1 Example 1: Full Three-Dimensional System

In this example all three state variablesx, y, andz are observed and stored in the training data
set. In particular, a trajectory is generated by a high-order numerical solver and observed at every
∆t = 0.01 starting from the initial condition(x0, y0, z0) = (1, 1, 1) until T = 10,000 s. From
this long trajectory, 10,000 data sequences of length 0.1 s (11 time steps) are taken as training
data, which allows 10 steps to be used for recurrent loss. A standard ResNet with three hidden
layers with 20 neurons each is used, and the mean squared recurrent loss function is minimized
using Adam with a constant learning rate of 10−3 for 10,000 epochs.

Prediction is carried out toT = 100 s (10,000 time steps) from a new initial condition
(10, 10, 20). Figure 2 shows the trajectory prediction as well as the log absolute error. We see that
despite how the prediction trajectories quickly deviate from the reference trajectories (as should
be expected for a chaotic system), the pointwise error in allthree variables remains bounded
over the long term. In addition, Figs. 3–5 show qualitatively similar phase plots, histograms, and
autocorrelation functions, with at worst the quantitativechaos statistics of 9% in relative error.
See Table 1 for details.

4.1.2 Example 2: Reduced One- or Two-Dimensional Systems

In this example we consider the six possible combinations ofpartially-observed systems arising
from Lorenz 63. Specifically, we consider observing two variables of onlyx andy, only x and
z, and onlyy andz, as well as one variable of onlyx, only y, and onlyz. When variables are
missing, the Mori–Zwanzig formulation informs us that memory is required to learn the reduced
system dynamics. Hence, in all of the following experimentsa trajectory of the full Lorenz
system is generated by a high-order numerical solver and theobserved variables are observed at
every∆t = 0.01 starting from the initial condition(1, 1, 1) until T = 10,000 s. (The unobserved
variables are discarded from the true system solutions.) From this long trajectory, 10,000 data
sequences of length 0.2 s (21 time steps) are taken from only the observed variable(s) as training
data. This allows 0.1 s (10 steps) for memory and 0.1 s (10 steps) for recurrent loss. A standard
ResNet with three hidden layers and 20 neurons each is used, and the mean squared recurrent
loss function is minimized using Adam with a constant learning rate of 10−3 for 10,000 epochs.

Prediction for the observed variables is carried out toT = 100 s (10,000 time steps) from
a new initial condition(10, 10, 20), with the corresponding observables in different cases. The
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FIG. 2: Ex. 1: Lorenz 63 full system—individual trajectory comparison and pointwise error

FIG. 3: Ex. 1: Lorenz 63 full system—phase plots (left: reference; right: DNN prediction)

two-variablex andy system is shown in Figs. 6–9. We see bounded pointwise error indicating
stability, qualitatively similar run in phase plots indicating similar behavior, a similar histogram
indicating the appropriate density, and chaos statistics very close to the reference.
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FIG. 4: Ex. 1: Lorenz 63 full system—histogram comparison

FIG. 5: Ex. 1: Lorenz 63 full system—autocorrelation function comparison

The one-variablez system is shown in Figs. 10 and 11. Once again we see bounded point-
wise error, similar histograms and autocorrelation functions, and very accurate chaos statistics.
The correlation dimension, approximate entropy, and Lyapunov exponent values for all of the
combinations of observed variables are reported in Table 2.The predicted statistics are at worst
17.5% off from the reference statistics in relative error, but are typically significantly lower, and
we note that in the few cases where relative error exceeds 10%it is only in one of the three
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TABLE 1: Ex. 1: Lorenz 63 full system—metrics for chaotic behavior comparison

Metrics Reference Solution DNN Prediction Relative Error

Correlation dimension 1.9924 2.1722 9.0%
Approximate entropy 0.0435 0.0441 1.4%
Lyapunov exponent 0.5504 0.5534 0.5%

FIG. 6: Ex. 2: Lorenz 63 reduced system ofx andy—individual trajectory comparison and pointwise error

statistics with the other two being much more accurate. For example, we see that the reduced
system ofx andz has a relative error in Lyapunov exponent of 17.5%, but matches correlation
dimension and approximate entropy at relative errors of 0.1% and 3.0%.

4.2 High-Dimensional System: Lorenz 96

The Lorenz 96 system (Lorenz, 1996) is anN -dimensional dynamical system given by

dxi

dt
= (xi+1 − xi−2)xi−1 + F, (16)
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FIG. 7: Ex. 2: Lorenz 63 reduced system ofx andy—phase plots (left: reference; right: DNN prediction)

FIG. 8: Ex. 2: Lorenz 63 reduced system ofx andy—histogram comparison

for i = 1, . . . , N , for N ≥ 4 wherex−1 = xN−1, x0 = xN , xN+1 = x1, andF is a forcing
parameter. IfF = 8, the system exhibits chaotic behavior. In the examples below, we choose
N = 40 as in Lorenz and Emanuel (1998).
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FIG. 9: Ex. 2: Lorenz 63 reduced system ofx andy—autocorrelation function comparison

FIG. 10: Ex. 2: Lorenz 63 reduced system ofz—individual trajectory and chaos statistics comparison, and
pointwise error

4.2.1 Example 3: Full 40-Dimensional System

In this example all 40 state variables are observed. In particular, a trajectory is generated by a
high-order numerical solver with∆t = 0.01 from the initial condition(8.0081, 8, 8, . . . , 8) until
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FIG. 11: Ex. 2: Lorenz 63 reduced system ofz—histogram and autocorrelation function comparison

T = 10,000 s (1,000,000 time steps). From this long trajectory,100,000 chunks of length 0.1 s
(11 time steps) are taken as training data. This allows 10 steps to be used for recurrent loss. A
standard ResNet with three hidden layers with 200 neurons each is used, and the mean squared
recurrent loss function is minimized using Adam with a constant learning rate of 10−3 for 2000
epochs.

Prediction is carried out toT = 500 (50,000 time steps) from the new initial condition
(8.01, 8, 8, . . . , 8). Figure 12 shows the prediction results fort = 450 throught = 500 with the
ith row corresponding to the trajectory of the variablexi. We see the same type of qualitative
behavior in the reference and prediction, with wavelike forms flowing through the 40 variables.
Table 3 shows the correlation dimension, approximate entropy, and Lyapunov exponent for this
experiment. As in Ex. 2, we note that while the relative errorfor approximate entropy is very
high at 46.3%, we consider that it may be an anomaly as the other two statistics are significantly
more accurate at 3.1% and 3.5%.

4.2.2 Example 4: Reduced Three-Dimensional System

In this example we consider observing onlyx1, x2, andx3 from the 40-dimensional Lorenz 96
system. Again, Mori–Zwanzig informs us that memory is required to learn the reduced system
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TABLE 2: Ex. 2: Lorenz 63 reduced systems—metrics for chaotic behavior comparison

Metrics Reference Solution DNN Prediction Relative Error
(x, y)

Correlation dimension 2.0903 1.9747 5.5%
Approximate entropy 0.0705 0.0707 0.3%
Lyapunov exponent 5.6830 5.8369 2.7%

(x, z)

Correlation dimension 2.1484 2.1472 0.1%
Approximate entropy 0.0796 0.0820 3.0%
Lyapunov exponent 4.6859 5.5066 17.5%

(y, z)

Correlation dimension 2.2618 2.1986 2.8%
Approximate entropy 0.0564 0.0571 1.2%
Lyapunov exponent 3.1263 3.5128 12.4%

(x)

Correlation dimension 2.0160 1.8821 6.6%
Approximate entropy 0.1956 0.1986 1.5%
Lyapunov exponent 27.0396 27.3691 1.2%

(y)

Correlation dimension 1.7573 1.7979 2.3%
Approximate entropy 0.2053 0.2027 1.3%
Lyapunov exponent 29.1866 29.5374 1.2%

(z)

Correlation dimension 1.7916 1.8037 0.7%
Approximate entropy 0.2171 0.1940 10.6%
Lyapunov exponent 26.1375 25.7496 1.5%

FIG. 12: Ex. 3: Lorenz 96 full system—individual trajectory comparison

dynamics. Hence, a trajectory of the full system is generated by a high-order numerical solver
with ∆t = 0.01 from the initial condition(8.0081, 8, 8, . . . , 8) until T = 10,000 s. From this
long trajectory, 10,000 chunks of length 1.1 s (111 time steps) are taken from only the observed
variables as training data. This allows 1 s (100 time steps) for memory and 0.1 s (10 time steps)
for recurrent loss. A standard ResNet with ten hidden layersand 20 neurons each is used, and
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TABLE 3: Ex. 3: Lorenz 96 full system—metrics for chaotic behavior comparison

Metrics Reference Solution DNN Prediction Relative Error

Correlation dimension 1.4025 1.3585 3.1%
Approximate entropy 0.0067 0.0036 46.3%
Lyapunov exponent 0.2419 0.2506 3.6%

the mean squared recurrent loss function is minimized usingAdam with a constant learning rate
of 10−3 for 10,000 epochs.

Prediction is carried out toT = 100 (10,000 time steps) from the new initial condition
(8.01, 8, 8, . . . , 8). Figure 13 shows the individual trajectories betweent = 80 andt = 100 s
along with bounded pointwise error, which again indicates the stability of the prediction. Fig-
ure 14 shows the phase plots and quantitative measures, while Figs. 15 and 16 show the histo-
gram and autocorrelation function comparisons. Due to the significantly more chaotic and com-
plex nature of the Lorenz 96 system, it is now more difficult topick out identifying characteristics
in the trajectories and phase plots to compare. Nevertheless, the chaos statistics reported in Ta-
ble 4 indicate a strong match with only one of three statistics exceeding 10% relative error.

FIG. 13: Ex. 4: Lorenz 96 reduced system ofx1, x2, x3—individual trajectory comparison and pointwise
error
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FIG. 14: Ex. 4: Lorenz 96 reduced system ofx1, x2, x3—phase plots (left: reference; right: DNN predic-
tion)

FIG. 15: Ex. 4: Lorenz 96 reduced system ofx1, x2, x3—histogram comparison

5. CONCLUSION

We have presented a systematic and rigorous examination of learning the flow maps of fully-
and partially-observed chaotic systems using an approachable DNN framework. While in most
papers that examine this topic, pointwise error or a visual comparison of phase plots are used
to assess the accuracy of network prediction, here we use these tools as well as a variety of
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FIG. 16: Ex. 4: Lorenz 96 reduced system ofx1, x2, x3—autocorrelation function comparison

TABLE 4: Ex. 4: Lorenz 96 reduced system—metrics for chaotic behavior comparison

Metrics Reference solution DNN prediction Relative error

Correlation dimension 1.2310 1.1925 3.1%
Approximate entropy 0.1177 0.1332 13.1%
Lyapunov exponent 16.1671 17.1356 6.0%

other measures to demonstrate accurate long-term chaotic behavior prediction. Our numerical
examples show that this DNN framework is able to learn long-term chaotic behavior even when
systems are severely underobserved and training data are collected from a single initial condition.
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