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Uncertainty quantification in complex physical models is often challenged by the computational expense of these models.
One often needs to operate under the assumption of sparsely available model simulations. This issue is even more
critical when models include a large number of input parameters. This “curse of dimensionality,” in particular, leads
to a prohibitively large number of basis terms in spectral methods for uncertainty quantification, such as polynomial
chaos (PC) methods. In this work, we implement a PC-based surrogate model construction that “learns” and retains
only the most relevant basis terms of the PC expansion, using sparse Bayesian learning. This dramatically reduces the
dimensionality of the problem, making it more amenable to further analysis such as sensitivity or calibration studies.
The model of interest is the community land model with about 80 input parameters, which also exhibits nonsmooth
input-output behavior. We enhanced the methodology by a clustering and classifying procedure that leads to a piecewise-
PC surrogate thereby dealing with nonlinearity. We then obtain global sensitivity information for five outputs with
respect to all input parameters using less than 10,000 model simulations—a very small number for an 80-dimensional
input parameter space.

KEY WORDS: uncertainty quantification, surrogate model, Bayesian inference, compressive sensing,
classification, polynomial chaos, community land model

1. INTRODUCTION

Land ecosystems influence the Earth’s climate system through multiple biophysical and biogeochemical feedback
mechanisms. These mechanisms operate mainly through net land surface fluxes of greenhouse gases (GHG), variation
in land surface albedo, and land-atmosphere exchanges of sensible and latent heat. A major objective in the devel-
opment of the community land model (CLM) is to improve prediction of future states of the climate and ecosystems
by including new components and processes that contribute to these feedbacks [1]. For example, estimating the sign
and magnitude of the land component of the global carbon-climate feedback depends on a mechanistic representation
of carbon uptake by vegetation, turnover of live plant parts to litter, and decomposition of litter by soil heterotrophs,
with return of carbon to the atmosphere by respiration and long-term storage of recalcitrant forms of organic matter in
soils. These dynamics are sensitive to spatial and temporal patterns of changing temperature and precipitation, which
in turn depend on changes in GHG concentration, resulting in a complex array of feedbacks.

In general, predictions from computational models, including the CLM, are affected by a number of sources of
uncertainty. These include assumptions made in the modeling of physical processes, input parameter values, numer-
ical discretization, and initial and boundary conditions. To this end, the quantification of uncertainties in a physical
system involves two intimately related processes. The first relates to the forward propagation of uncertainty from input
parameters to output quantities of interest (QoIs). The reverse process focuses on the estimation of input parameters
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based on comparing model simulations with available observational or other computational data. In this study we
will tackle the first aspect, related to forward uncertainty quantification (UQ), with application to the carbon-cycle
feedback dynamics processes in the CLM. In particular we will perform a global sensitivity study and focus on the
challenges posed by the high dimensionality of the input parameters space and the fact that computational simulations
are expensive even on today’s leadership computing platforms.

Global sensitivity analysis (GSA) formally connects uncertainties in model output to the underlying uncertainties
present in the model inputs. This provides a formal approach to assess model reliability in particular when used in
a decision-making framework [2]. In this study we employ variance-decomposition methods which are based on the
decomposition of the model output variance into fractions associated with input factors and their interactions. The
effects of input parameters and their interactions are quantified though Sobol indices [3, 4]. While these indices can
generally be computed through Monte Carlo (MC) sampling, in practical high performance computing settings, the
slow (1/

√
N ) convergence of MC renders these methods prohibitively expensive for reasonable accuracy. In this work

we are focusing on developing response surface models to be used as efficient-to-evaluate surrogate models in place
of the expensive CLM simulations.

In particular we are fitting polynomial chaos (PC) expansions to the QoIs.As the number of basis terms increases
factorially fast with the number of dimensions and the total polynomial order, e.g., a second-order polynomial involves
about 3000 terms while a third-order polynomial leads to about105 terms in 80-dimensional input parameter space.
This leads to a prohibitive number of model evaluations, up to∼106, necessary to compute the PC basis terms. One
alternative given a limited number of model runs is to evaluate the expansion coefficients by regression. Several
regularization approaches were developed to constrain the problem when the system is underdetermined, i.e., the
number of coefficients is larger than the number of model evaluations.

A popular approach is the Tikhonov regularization [5], also known as ridge regression. This approach adds anl2
norm-based constraint on the vector of unknowns, in our case the PC response surface coefficients. The Tikhonov
regularization effectively reduces the magnitude of coefficients for unimportant basis terms, but they are still retained
in the response surface model. Alternative regularization approaches are the least absolute shrinkage and selection
operator (LASSO) [6] or least angle regression (LARS) [7, 8]. These techniques use thel1 norm of the parameter
vector and result in typically many coefficients driven to zero, leading to a sparse response surface solution if the
underlying physical system exhibits sparsity. Note that the sparsity is very commonly present in physical systems.

While thel1 regularization approach, or compressive sensing, has been recently applied to polynomial bases [9],
it is useful to cast the problem in a Bayesian framework in presence of limited information. In the Bayesian formu-
lation, the regularization terms are embedded in the prior formulation while the regression term is incorporated in
the likelihood [10]. In this context, thel1 penalty corresponds to independent Laplace priors on the expansion coeffi-
cients. Independent studies by Park and Casella [11] and Ji and Carin [12] proposed similar Bayesian approaches to
thel1 regularization approach, henceforth referred to as Bayesian compressive sensing (BCS),almost identical to the
relevance vector machine (RVM) sparse learning technique described in [13], and applied recently in the multi-output
context for uncertainty quantification in [14].Furthermore, Babacan et al. [15] introduced a numerical approach for
BCS based on a greedy algorithm, allowing its efficient application in practical image processing problems. This paper
builds on this methodology and further introduces an iterative approach for selecting higher-order PC terms, making
the combined approach feasible for large dimensional configurations.

A striking feature of the CLM is the fact that simulations can be broadly categorized into two groups. For some
input parameters, the modeled vegetation dies off in a long term, forcing some outputs of interest to vanish. This
leads to two quantitatively different regimes for the forward function that describes the relationship between input
parameters and output quantities of interest. It is well-recognized [16] that polynomial-based orthogonal expansions
have poor accuracy for representing such nonsmooth behavior. A number of studies addressed this issue in PC-based
UQ by employing domain decomposition [17–20] and/or basis enrichment methods [21–24]. Brute-force domain
decomposition methods suffer from the curse of dimensionality as they split the domains parallel to axes, dimension-
by-dimension. While smarter domain decomposition methods try to “learn” the high-gradient regions and split the
input space accordingly, these methods, as well as basis enrichment methods require judicious,ad hocanalysis that
is computationally intractable in higher dimensions. In such settings, we will employ data-driven decomposition,
relying on techniques borrowed from the machine learning community. Classification algorithms, e.g., the random
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decision forest (RDF) approach [25], are trained on existing sets of samples, partitioned such that in each set, the QoIs
exhibit smooth behavior. The iterative BCS algorithm is used to find PC-based response surfaces corresponding to
each partition. The QoIs at new sample points are obtained by evaluating the most appropriate response surface model
according to the classification algorithm.

This paper is organized as follows. In Section 2 we introduce PC surrogates in general. Section 3 focuses on the
BSC methodology for building sparse PC surrogates, and presents several numerical tests to illustrate the performance
of the algorithm. The iterative procedure for selecting basis terms in the setting of high-dimensional problems is
proposed and discussed in Section 4. Next, in Section 5, we introduce and discuss piecewise-PC expansions as a tool
to handle strongly nonlinear models. The application of the techniques to the CLM is demonstrated in Section 6.
Finally, we conclude and discuss the results in Section 7.

2. POLYNOMIAL CHAOS SURROGATE

Consider aforward modelz = f(λ), whereλ = (λ1, λ2, . . . , λd̃) is a d̃-dimensional input parameter vector and
z is a scalar output. PC spectral expansions [26, 27] view both input parameters and the output of interest as ran-
dom variables and expand them as a series of orthogonal polynomialsΨk(ξ) of standard, i.i.d. random variables
(ξ1, ξ2, . . . , ξd) = ξ. This is essentially a parameterization of all inputs

λi '
Kin−1∑

k=0

λi,kΨk(ξ) (1)

and the output

z '
K−1∑

k=0

ckΨk(ξ) (2)

by sets ofdeterministicnumbersλi,k andck for i = 1, 2, . . . , d̃ andk = 0, 1, . . . ,K(in) − 1. Note that, in general, the
number of input parameters̃d does not need to coincide with thestochastic dimensiond. The number of basis terms
in the input and output PC expansions areKin andK, respectively. For forward uncertainty propagation and response
surface construction, one typically fixesKin initially, while K takes values depending on the output representation
accuracy requirements and truncation rules.

In Eqs. (1) and (2) the polynomialsΨk(·) are taken by construction to beorthonormalwith respect to the proba-
bility density function (PDF)π(ξ) of the underlying variableξ:

〈Ψi(ξ)Ψj(ξ)〉 =
∫

Ψi(ξ)Ψj(ξ)π(ξ)dξ = δi,j . (3)

Each indexk of the multivariate polynomialΨk(ξ) corresponds to a vectormulti-indexp(k) = (p(k)
1 , p

(k)
2 , . . . , p

(k)
d ).

Further in the text, for clarity of presentation, we will drop the explicit dependence notation inp(k) orp(k)
i , and simply

use multi-indexp or scalar indexk, depending on the context.The multivariate polynomialΨp(·) is a function ofd
variablesξ = (ξ1, ξ2, . . . , ξd) defined by

Ψp(ξ) = ψp1(ξ1)ψp2(ξ2) · · ·ψpd
(ξd), (4)

whereψpi(ξ) is the standard one-dimensional orthonormal polynomial of degreepi, for i = 1, 2, . . . , d. By conven-
tion, the sum of all degreesp1 + p2 + · · · + pd is called the order of the multivariate polynomialΨp(ξ) or Ψk(ξ) if
one enumerates the polynomials by a single scalar index.

Two of the most commonly used PC expansions for continuous random variables are Gauss-Hermite (Hermite
polynomials as functions of standard normal random variables) and Legendre-uniform (Legendre polynomials as
functions of uniform random variables) PC expansions [28]. While the major conclusions of this work are independent
of the basis choice, we will focus on Legendre-uniform (LU) PC as the more appropriate choice when one deals
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with input parameters of bounded support. Note that while the conventional PC expansions use Hermite or Legendre
polynomialswithoutnormalization, we will use the normalized polynomial bases for convenience and to avoid biasing
the basis selection in Section 3.

The first fiveunivariateLegendre polynomials are

L0(ξ) = 1
L1(ξ) = ξ

L2(ξ) =
1
2

(
3ξ2 − 1

)
(5)

L3(ξ) =
1
2

(
5ξ3 − 3ξ

)

L4(ξ) =
1
8

(
35ξ4 − 30ξ2 + 3

)
,

satisfying the recurrence relation [29] for allm = 1, 2, . . .

Lm+1(ξ) =
2m + 1
m + 1

ξLm(ξ)− m

m + 1
Lm−1(ξ). (6)

Since theL2 norm of a Legendre polynomialLm(ξ) with respect to the density ofξ π(ξ) = 1/2 is ||Lm(ξ)|| =√
1/(2m + 1), the normalized, univariate Legendre basis functions are

ψm(ξ) =
√

2m + 1Lm(ξ). (7)

As long as the input PC expansion (PCE) is known, the output PCE can serve as a surrogate model for the function
z = f(λ) that is computationally cheap and allows simple extraction of the statistical properties ofz. Since the goal is
to obtain a surrogate model that isuniformlyaccurate across a given input range, we employ linear PCEs for the input
parameters, effectively assuming that the inputλi is a linear transform away from the underlying uniform random
variableξi, i.e.λi = λi,0 + λi,1ξi. The goal is to build an output PC expansion (2) given a set of input-output pairs
{(λi, z(λi))}N

i=1 as results ofN model simulations, calledtraining runs. Note that, since the relationship between
physical parameter vectorλ and the PC inputξ is known, our task is essentially to construct a polynomial regression
to obtain PC coefficientsck in (2) given an input-output data setD = {(ξi, zi)}N

i=1. Such a model can then serve as
a surrogate for the modelf(·) and be queried instead of it in studies that require prohibitively many forward model
simulations, such as global sensitivity analysis, optimization, or calibration studies.

In PCEs (1) and (2) a finite number of basis terms are used, according to some predefined truncation or basis
selection rule. Typicalisotropic—i.e., all dimensions are treated equally—truncation rules are listed below.

• Total degree (TD): the classical and most frequently used rule truncates the PCE according to the total degree
of basis polynomials,

d∑

i=1

pi ≤ p, (8)

i.e., all polynomials of total degree≤ p are retained.

• Tensor product (TP): this rule bounds the polynomial degree per dimension, i.e., all multivariate polynomials
with univariate components of degree≤ p are retained,

max
i=1,...,d

pi ≤ p. (9)

• Hyperbolic cross (HC): the product structure of the rule encourages lower-rank, higher-degree structure of the
corresponding multi-index,

d∏

i=1

(pi + 1) ≤ (p + 1). (10)
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• lq truncation (LQ): this rule is based on thelq norm of the degree vector,

d∑

i=1

pq
i ≤ pq. (11)

Note that the TD truncation rule is a special case whenq = 1. The typical setting is0 < q < 1, which promotes
low-rank interactions similar to the HC rule.

In all the truncation rules above, we will refer top as generalized degree. Note that one can build the truncation
rules to employanisotropywith respect to dimensions. For example, one can generalize the TD rule to

∑d
i=1 wipi ≤ p

for 0 ≤ wi ≤ 1, where smaller weights correspond to more important dimensions by allowing for larger degrees in
these dimensions.

Typically, physical models are parameterized in such a way that only low-rank interactions matter, i.e., the inputs
tend to affect the outputs mainly individually (rank 1) or pairwise (rank 2). This is the basis of the high dimensional
model representation (HDMR), also known as analysis of variance (ANOVA) decomposition [30]. The HDMR trun-
cation of PC promotes low-rank interaction terms explicitly and allows more flexibility. One first retains univariate
terms up to a certain generalized degreep(1), followed by bivariate terms up to a generalized degreep(2) and so on.
Figure 1 illustrates various truncation options for a two-dimensional basis.

The truncation options above are chosen as a preprocessing step. However, often one needs a more customized
basis selection that best explains the dataset at hand. Moreover, in a high-dimensional setting, the number of basis
terms retained by classical truncation rules could be prohibitively large, necessitating adaptive, iterative strategies. In

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dim 1

D
im

 2

FIG. 1: Illustration of various isotropic truncation options with generalized degreep = 10. A dot (i, j) corresponds
to a basis termψi(ξ1)ψj(ξ2). Top row, left to right: TD, TP, HC. Bottom row, left to right: LQ withq = 1/3, LQ
with q = 0.5, and HDMR with TD truncation of each lower-rank subset with degreesp(1) = 10 andp(2) = 7.
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the following, we essentially recast the truncation problem as a basis selection problem and apply techniques inspired
by sparse signal processing, as well as statistical learning, to polynomial bases.

3. BAYESIAN COMPRESSIVE SENSING FOR POLYNOMIAL REGRESSION

Bayesian methods are well suited to deal with incomplete, sparse information [31]. Typically, the outcome of a
Bayesian approach consists of a posterior probability distribution, describing our knowledge of the quantities un-
der study. Bayes’ formula, in the context of inferring a PC expansion for the quantities of interest, based on available
dataD, can be written as1

q(c) ∝ LD(c)p(c). (12)

Here the likelihoodLD(c) is a measure of a goodness-of-fit of the polynomial representation

z ' zc(ξ) =
K−1∑

k=0

ckΨk(ξ) (13)

to the data. We will assume a Gaussian noise model with standard deviationσ to write

LD(c) = (2πσ2)−N/2 exp

(
−

N∑

i=1

(zi − zc(ξi))2

2σ2

)
. (14)

This Gaussian assumption is merely a modeling choice. It corresponds to the statistical discrepancy between the
complex model and the surrogate model.One should expect this discrepancy to have a vanishing mean, while the
sizeσ of the standard deviation of this discrepancy represents a tolerance to the fitting error. With these restrictions,
i.e., given a mean and a standard deviation, the best assumption is Gaussian in the sense of the maximum entropy
principle [32]. To some extent, this assumption is similar to classical Gaussian error assumptions in least-square
regression. As for the correlations, one expects the discrepancy errorsbetween the full and surrogate modelsto be
uncorrelated in the presence of only sparse data—the average distance between data points is expected to be larger
than the correlation length in the discrepancy.

The prior distributionp(c) incorporates prior information on the object of inference, i.e., the PC mode vector
c. The posterior distributionq(c) is the main outcome of the inference process, and it corresponds to the current
knowledge about the inferred values ofc giventhe data setD.

While in principle the Bayesian procedure outlined above could be used to determine the full vector of coefficients
c of all basis functions, this is in practice not always feasible. If the outputz depends on many parameters, thenξ

and the PCE (13) will be high dimensional, and if the forward model is computationally expensive to evaluate, then
the number of samples required to determine all the terms in this expansion would be prohibitively large. Moreover,
whether in the case of sparse information or even in abundance of data, some input parameters might beunidenti-
fiable, i.e., the available information does not inform on these parameters. Our task of finding the best possible PC
representation given the available data will, in particular, automatically detect and exclude the unidentifiable inputs
from the surrogate representation. To this goal, we rely on BCS [12, 15] to determine a sparse set of basis functions
that is best supported by the data, as outlined below.

The key in inferring a sparse set of PC modes is the usage ofsparsitypriors that “encourage” the modes to have
nearly vanishing values, unless there is strong support in the data for those PC modes. This leads to a sparse set of
basis functions. A common sparsity prior is the Laplace prior of a form

p(c) = (α/2)K+1 exp

(
−α

K∑

k=0

|ck|
)

. (15)

1Note that the data setD actually is a set of training simulation results of the modelf(·)
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In this case themaximum a posteriori(MAP) estimate of the object of inferencec, i.e., the vectorc that maximizes
the posteriorq(c) from (12), coincides with the solution of the optimization problem

arg max
c

(log LD(c)− α||c||1) . (16)

Clearly, the prior distribution corresponds to thel1 regularization termα||c||1. The optimization problem (16) cor-
responds to the classical compressive sensing algorithm that is extensively used in the signal processing community
[33]. The positive parameterα controls the relative importance of the penalty with respect to the goodness-of-fit. It
is typically fixed at a user-defined value. In a hierarchical Bayesian setting, however, it can be endowed with a prior
distribution and marginalized over in the posterior distribution.

Following [15], we use a hierarchical construction with Gaussian prior distribution on the PC coefficientsc

p(ck|s2
k) =

1√
2πs2

k

exp
(
− c2

k

2s2
k

)
(17)

and gamma prior distribution on the prior widthss2
k

p(s2
k|α2) =

α2

2
exp

(
−α2s2

k

2

)
. (18)

The regression technique with the hierarchical prior construction (17) is commonly referred to as relevance vector
machine (RVM) [13], although the typical RVM usage is associated with localized, kernel basis functions instead of
polynomial bases.For convenience, we will use a formal notations2 for the vector of prior variances. Marginalizing
over the hyperparameterss2, one obtains the Laplace prior (15). Indeed,

p(c|α2) =
∫ ∞

0

K−1∏

k=0

p(ck|s2
k)p(s2

k|α2)ds2
k =

K−1∏

k=0

α

2
e−α|ck|. (19)

This combination of a Gaussian and gamma distributions leading to a Laplace distribution has been implemented in
the Bayesian LASSO methodology, which eventually can be cast into the optimization form (16) as well [11, 34]. The
parameterα can further be modeled hierarchically. The major simplifying assumption at this stage is in the fact that
hyperparameter values are not being marginalized over. Instead they are fixed—in practice, updated—according to
an evidence maximization procedure, effectively assuming very narrow priors for them. For details of the procedure,
see [13, 15, 35]. The hyperparametersσ2, s2, andα are fixed at the values that maximize theevidenceor the integrated
likelihood

E(σ2, s2, α) =
∫

RK

LD(c; σ2)p(c|s2)p(s2|α)p(α)p(σ2)dc

∝ p(σ2)p(α)p(s2|α)σ−1|C|− 1
2 exp

(
− 1

2σ2
yT C−1y

)
, (20)

where C = I + ΨS−1ΨT . Here Ψ is an N × K projection matrix with entriesΨik = Ψk(ξi) and S =
diag(σ2/s2

0, . . . , σ
2/s2

K−1).
The evidence maximization is in practice with respect to the inverse variances1/s2

k instead ofs2
k. It turns out that,

for many basis terms, the inverse variance that maximizes the evidence grows indefinitely, i.e.,s2
k → 0. These are the

terms that will be purged from the basis set. In practice, however, a much faster heuristic optimization algorithm is used
that has weaker memory requirements and deletes and adds basis functions iteratively using analytic manipulations
rather than numerical ones; see [15, 35]. The algorithm involves a stopping criterion parameterε, which is compared
to the total relative change in the maximal value of the evidence,(M (n)−M (n−1))/(M (n)−M (1)) < ε, whereM (n)

is the approximate value for the maximum of the evidence at thenth iteration. Smaller values ofε make the iterative
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procedure progress further, leading to fewer retained basis terms. In all the subsequent tests, unless noted otherwise,
a value ofε = 10−9 has been used.

Let us denote byK ′ the number of retained basis functions, and reindex them using the same subscriptk, for
k = 0, 1, . . . ,K ′ − 1. Together with the likelihood (14) and the prior (17), for fixed values of the hyperparameters
s2

k,σ2, one obtains a Gaussian posterior distribution forc with mean and variance, respectively [12, 15],

µ = σ−2ΣΨT y and Σ = σ2(ΨT Ψ + S)−1, (21)

whereΨ is anN ×K ′ projection matrix with entriesΨik = Ψk(ξi) andS = diag(σ2/s2
0, . . . , σ

2/s2
K′−1). Indeed,

note that, in matrix forms, and focusing on the dependency onc only,

q(c) ∝ LD(c)p(c) ∝ exp
(
− 1

2σ2
(y −Ψc)T (y −Ψc)

)
exp

(
− 1

2σ2
Sc

)
∝

∝ exp
(
− 1

2σ2
cT (ΨT Ψ + S)c +

1
σ2

cT ΨT y

)
∝ (22)

∝ exp
(
−1

2
(c− µ)T Σ−1(c− µ)

)
.

The final surrogate model is therefore a Gaussian process with mean

m(ξ) =
K′−1∑

k=0

µkΨk(ξ) (23)

and covariance function

C(ξ,ξ′) =
K′−1∑

i,j=0

Ψi(ξ)ΣijΨj(ξ′). (24)

3.1 Numerical Tests

In this section, we illustrate the application of the BCS algorithm on analytically tractable forward functions with
known sparsity structures. In all tests of this section, the input parameter vectorλ is identified withξ, to avoid an
extra layer arising from the input PC (1). In principle, one could associate this setting with simple linear input PCEs
λi = ξi. This simplification for the test problems does not diminish the generality of the methods presented.

For these synthetic test cases, we will consider two error measures, the goodness-of-fit of the resulting represen-
tation at theN = Nt training points and atNv validationpoints.Both the training and validation points are selected
randomly, according to a uniform, Latin hypercube sampling (LHS) scheme.We rely on a relativeL2 validation error

Ev =

√√√√
∑Nv

i=1

(
z(ξi)− zµ(ξi)

)2

∑Nv

i=1 z(ξi)2
, (25)

where the posterior mean PC mode vectorc = µ andξi’s are the validation points fori = 1, 2, . . . , Nv. The error
at the training pointsEt(c) is defined similarlyand will be used as a second error measure. Note that while our
construction leads to anuncertainresponse surface, since the polynomial representation coefficientsc are associated
with a posterior probability distribution, we report the error based on the mean estimate. However, although the
BCS algorithm uses evidence maximization, it is still prone to overfitting, if the stopping criterionε in the heuristic
optimization approach is too loose. In the tests below, overfitting will be detected by comparing the validation error
Ev from (25) to the training errorEt. If these two errors are close to each other, we conclude that the corresponding
PC surrogate is robust; otherwise it is overfitting, i.e., it is too complex and has too many degrees of freedom for the
particular data at hand.
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First, consider the following,d-dimensional,kth-order polynomial function

f(ξ) =
K−1∑

k=0

ckΨk(ξ), (26)

where only few coefficients are nonzero. Namely, we randomly selects terms from the total numberK = (d +
k)!/(d!k!) and set the corresponding coefficients to be equal to1, while the rest of the polynomial coefficients are
set to0. The number of nonzero coefficientss is essentially thesparsityof the model. For each model, we sampleN
evaluations and use those as data for a BCS run to recover the nonzero coefficients. A single BCS run is considered a
successif only thes nonvanishing terms are picked. Successful runs lead to exact recovery of thenonzero terms with
remaining relativeL2 errorspurely due to the fact that one has a finite number of measurements.

Figure 2 illustrates the results of three different tests,s = 20 ands = 50 with a fifth-order, five-dimensional
polynomial, as well ass = 20 with a third-order,10-dimensional polynomial. We report the dependence of the
averageL2 relative errorsEt andEv and the success rate per100 replica runs for various values of the number of
measurements.Replica runs differ only by the training sample set. The success rate is defined as the fraction of runs
that lead to the recovery of the nonzero bases.The relative errors are computed both for the training points and on a
separate validation set of points of the same cardinality, proving that the failed runs suffer from overfitting.

Furthermore, Fig. 3 demonstrates the full dependence of the success rate on the number of measurements for a5-
dimensional problem with a 10th-order initial basis. Here, in order to save some computational effort, we usedR = 10
replica simulations to determine the success rate. The results illustrated in Figs. 2 and 3 show that the algorithm
performance depends on the sparsity of the problem and is essentially independent of the full dimensionality. Using
Fig. 3, one can also draw a “rule-of-thumb” that for a somewhat safe recovery of the true solution one needs at least
approximately5s measurements, wheres is the sparsity of the problem.

Genz functions [36, 37] provide a convenient way to dial-in dimensional importances, i.e., the sparsity of the model

can be controlled up front. Consider a Genz-exponential functionf(ξ) = exp
(∑d

i=1 aiξi

)
. All Genz functions, and

the exponential function in particular, share a parameter vectora = (a1, a2, . . . , ad) that controls how important each
parameter is for the output. These coefficients are set to follow a power ruleai = i−M . We will first focus on the
M = 1 case and illustrate further how the BCS algorithm detects the important dimensions. The dialed-in dimensional
importancesai are randomly shuffled for the purpose of this illustration. The BCS algorithm is employed to distill the
first-order terms only. Eventually all terms are picked as relevant with a high tolerance parameter. However, the order
by which the basis terms are picked corresponds to hypothetical situations with stricter tolerances. The outcome of
the algorithm clearly shows the order of importance of the dimensions: the earlier a specific term is selected, the more
important it is. Figure 4 shows the values of dimensional importances, as well as the order by which the algorithm
picks them. This proof-of-concept demonstrates that the BCS algorithm detects the dimensional importances in the
expected sequence. Figure 4 also demonstrates the clear correlation between the dialed-in dimensional importance
coefficients and the PC coefficients of the resulting linear expansions. Note that, for the given BCS stopping criterion,
the algorithm detects the higher-importance dimensions better than the lower-importance ones.

For further tests, we will focus on the Genz-oscillatory function

f(ξ) = cos(2πe +
d∑

i=1

aiξi), (27)

where the horizontal shift parameter has been chosen to avoid extra structure in the problem due to the even character
of the cosine function. Note that despite the name, the function may not show oscillatory behavior on the hypercube
ξ ∈ [−1, 1]d, depending on the values ofai’s.

The power parameterM controls the sparsity of the model. For a more insightful sparsity indicator, consider the
effective dimensionality,deff defined as the number of the most influential dimensions contributing to95% of the
overall parameter sum

∑d
i=1 ai, i.e.,

deff = arg min
d′

(∑d′

i=1 ai∑d
i=1 ai

> 0.95

)
. (28)
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FIG. 2: Relative error (left column) and exact recovery success rate (right column) for three test functions of
form (26). Top row:p = 5, d = 5, s = 20. Middle row: p = 5, d = 5, s = 50. Bottom row:p = 3, d = 10,
s = 20. The test functions are created using TD truncation of degreep with a d-dimensional input and exactlys
randomly chosen coefficients set to unity, while the other coefficients vanish.

As one would expect, the higher the effective dimensionality of the model, the less accurate the surrogate of a given
maximal order is, for the same number of measurements. Indeed, Fig. 5 illustrates an application of the algorithm for
a50-dimensional Genz-oscillatory function withM = 2 starting with an initial overcomplete basis of third-order. The
plots, from left to right, correspond to three different sets of measurements, withN = 1000, N = 5000, andN =
10,000. A validation set with the same cardinalityN is set aside to estimate the relative error on these points as well.
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FIG. 3: Dependence of the sparse basis recovery success rate, out of10 replicas, on the number of measurements
and the model sparsity, i.e., the number of nonzero polynomial coefficients in the polynomial model (26).
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FIG. 4: Results of a first-order BCS algorithm with a50-dimensional test function andNt = 1000 training samples.
The dimensional importances are shown with black dots, while the sequence in which the procedure picks the impor-
tant dimensions is highlighted by the blue lines joining the dots, starting from the top. The right plot illustrates the
correlation between the importance coefficients and the coefficients of the resulting linear PCEs.

In the case of overfitting, the error measure for the validation dataset is drastically above that of a training dataset,
indicating that the corresponding model is not trustworthy. Clearly, the larger the training dataset, the more effective
dimensions are captured accurately, while for a sparse dataset (N = 1000, the left plot), unless only a few dimensions
matter, the resulting PC surrogate overfits the data badly.
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FIG. 5: RelativeL2 error measures for both training and validation datasets as the effective dimensionality increases,
for three different values of the number of measurements,N = 1000 (left plot), N = 5000 (middle plot), andN =
10,000 (right plot).

Next, consider again the function (27) withd = 5 andai = i−2. Since the dimensionality is not too high, one
can compute the true PC coefficients up to reasonably high order. Figure 6 shows the true, scaled coefficients up to
fifth-order, computed using very accurate, level-14 Clenshaw-Curtis sparse quadrature. The BCS is applied in three
different scenarios, for varying numbers of measurements. It is clear that with a lower number of measurements, some
spurious, nonphysical PC modes appear due to lack of data. On the other extreme, when there is a large amount of
data available, BCS does a very good job recognizing and retaining only the most important PC modes. Note that
these results are in no contradiction with the “rule-of-thumb” described earlier in the paper: to recover approximately
100 terms accurately, one needs to make use of approximately5× 100 = 500 measurements.

The next illustration, Fig. 7, further demonstrates the effect of the number of measurements on the quality of the
surrogate for the same function (27). The left plot corresponds to a5-dimensional,10th-order basis, while the right
plot corresponds to a10-dimensional,5th-order basis. Note that, in both cases, the overcomplete basis sets have the
same cardinality,K = (10 + 5)!/(10!5!) = 3003. The error bars and the plotted points correspond to0.25, 0.50 and
0.75 quantiles out of10 identical simulations that differ only by the distribution of the training points. The validation
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FIG. 6: Comparison between the exact PC coefficients of the function (27) withai = i−2, d = 5, and the coefficients
recovered by the BCS algorithm for three different values of the number of measurements. The plot on the right is a
zoomed-in version of the upper-left corner.
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FIG. 7: The dependence of both training and validation relative errors on the number of measurement for 5- and
10-dimensional Genz oscillatory functions. The initial, overcomplete basis is taken with a TD truncation of orders10
and5, respectively, leading to the same number of basis terms in both cases.The error bars and the plotted points
correspond to0.25, 0.50, and0.75 quantiles out of10 identical simulations that differ only by the distribution of the
training points.Note that the initial increase in the error in the right plot is simply a consequence of strong overfitting.

sets, as before, have been chosen with the same cardinality as the corresponding training sets. The sparsity-controlling
parameterM has been set to equal to2, leading to effective dimensionalitiesdeff = 4 anddeff = 6 for the5D and
10D problems, respectively. The discrepancy of the validation errorEv and training errorEt indicates overfitting.
Clearly, as more training data arrive the quality of the PC surrogate improves—even if the error on training points
increases, the corresponding models are more robust, since there is not a large gap between the validation error and
the training error. The initial increase in the training error in the right plot in Fig. 7 reflects the fact that the data at hand
do not cover the high-dimensional input parameter space well enough, leading to simpler, more smooth input-output
relationships while with more and more data, the higher order relationships are exposed, rendering a polynomial fit of
a fixed order less accurate even at the training points.

In order to demonstrate the dependence of the surrogate quality on the BCS stopping criterionε we have tested
the BCS algorithm with a gradually looser criterion on a single data set, forN = 10,000 measurements. We used
the default, Genz-oscillatory function, withd = 50, M = 2 and started with an overcomplete basis of a total degree
p = 3. Clearly, finding the right value for the stopping criterion is important, as very loose criteria might lead to too
many retained terms causing an overfitting surrogate; see Fig. 8.

Figure 9 demonstrates convergence with the order of the initial overcomplete basis, for a given dataset of cardi-
nality N = 1000, with a fixed BCS stopping criterionε = 10−9, for a five-dimensional Genz-oscillatory function.
Again, as before, the error bars correspond to0.25 and0.75 quantiles out of10 replica runs. With higher order of the
initial basis, the BCS algorithm searches among more basis terms, therefore it is able to find a sparse PC surrogate
with a smaller relative error.

4. ITERATIVE PROCEDURE WITH BCS

With a total-degree truncation and in the presence of a large number of dimensions, one cannot generally afford to
build an initial PC basis of high order. Here we propose an iterative procedure that allowsenriching the basis with
higher order polynomialswhile maintaining the dimensionality reduction. Given a multi-index setS corresponding
to the current basis, we add a basis term only if it isadmissible. A conservative definition of the admissibility is the
following. We call a new basis term admissible, if by subtracting an order from any nonzero dimension one never
obtains a multi-index outside the setS. In other words,
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FIG. 8: The surrogate accuracy is plotted against the number of retained terms in the polynomial expansion by
varying the BCS stopping criterion.
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FIG. 9: Illustration of the surrogate convergence with increasing order of the initial, overcomplete basis.The error
bars and the plotted points correspond to0.25, 0.50, and0.75 quantiles out of10 identical simulations that differ only
by the distribution of the training points.

p = (p1, . . . , pd) is added toS, if p− ei ∈ S, for all i = 1, . . . , d, (29)

whereei = (0, . . . , 1, . . . , 0) with 1 in theith position. The full algorithm then reads as follows:
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• Step 0. Let̃S be a set of multi-indices with a total degree≤ l0, wherel0 is the initial PC order,

• Step 1. Run the BCS algorithm to reduce the current basis setS̃ → S.

• Step 2. Enrich the current basis by all admissible basis terms and call the new basis multi-index setS̃. Repeat
from Step 1 until the maximal orderl is reached.

Note that the admissibility condition can sometimes prove to be too restrictive. In Section 6, we apply a less con-
strained admissibility condition, therefore, a less conservative basis enrichment scheme in order to enhance the basis
search by having a larger set of an overcomplete basis at each step. The general flowchart of the iterative BCS algo-
rithm is schematically depicted in Fig. 10.

The resulting representation reads as follows:

zc(ξ) =
∑

p∈S

cpΨp(ξ), (30)

where the PC modescp are described by a multivariate Gaussian posterior of a dimensionality that is equal to the
cardinality ofS.

4.1 Numerical Tests

Consider a forward functionf(ξ1, ξ2) = ψ5(ξ1), i.e., a normalized Legendre polynomial of degree5 in the first
dimension. Clearly, a PC surrogate of this function can be exact and including only one term, corresponding to the
multi-index(5, 0). We start the iterative BCS (iBCS) procedure from a second total-order PC and iteratively grow (by
admissibility) and shrink (by BCS) the basis set. Figure 11 illustrates the results. At the iteration that includes the true
basis term(5, 0), that and only that term is selected. This test also illustrates how the iterative procedure increases
the basis set in the right direction, so that the final iteration includes the correct term. In all but the last iteration, the
basis set does not include the correct basis. However, the algorithm tends to keep terms “closer” to(5, 0) recognizing
a higher relative importance of the first dimension compared to the second dimension. Note, however, that in the two-
dimensional setting the application of the iterative procedure is merely for illustration, since in such low-dimensional
setting one could build an initial, overcomplete basis set of a large enough order to capture the correct basis term with
a single BCS application. The usage of the iterative procedure becomes necessary in very high dimensional problems,
where the construction of an overcomplete basis with a standard truncation rule (e.g., total-degree, or tensor-product)
is computationally prohibitive. For example, in an80-dimensional problem, a TD truncation of second order leads to
82!/(80!2!) = 3321 terms, while the third order involves83!/(80!3!) = 91,881 terms. The number of basis terms for
a TP-truncated expansion grows even faster, in an exponential fashion.

Consider now an 80-dimensional example with the cosine test function (27) andN = 10,000 training samples. We
used dimensionality importance decaying exponentM = 2, i.e.,ai = i−2 in (27), which corresponds to an effective

FIG. 10: Illustration of the iterative BCS algorithm. The choice of initial basis and the basis growth rule is often
problem-dependent and is dictated by computational capabilities at hand.
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FIG. 11: Illustration of the iterative basis growth strategy. The direction of successive iterations is from left to
right and from top to bottom. The true solution has a single PC term. The basis set grows in the “right” direction
in order to eventually capture the correct basis term. The(i, j)-square corresponds to the PC coefficient of the term
Ψi(ξ1)Ψj(ξ2). Note that for each plot, the colormap is different for the clarity of visualization.

dimensionalitydeff = 11 according to the definition (28). At the first iteration, we take an initial basis set of total order
2 with over3000 terms (note that, as mentioned in the previous paragraph, the third-order expansion leads to a very
large number of basis terms with a computationally intractable projection matrix). With every iteration we include
higher order basis terms in our search. However, as Fig. 12 illustrates, the relative errors do not decrease further after
the third-order. The reason is that we have used a very strict BCS stopping criterion to avoid overfitting. However,
the number of training points sets the limit: withN = 10,000 samples in an80-dimensional space, we can robustly
“learn” the model only up to certain accuracy. For a less strict criterionε one can reduce the error on the training
points, but the validation errorEv will increase indicating that the corresponding model is overfitting and should not
be used for accurate predictions. Nevertheless, note the number of basis terms retained compared to the number of
basis terms corresponding to a full total-order basis truncation of the respective order. We refer to Section 6, where for
the problem at hand, a more aggressive basis growth rule is implemented that allows a more exhaustive basis search
at each iteration.

5. PIECEWISE PC EXPANSIONS FOR NONSMOOTH FUNCTIONS

In many situations, the training dataset suggests either strong nonlinearity, nonsmoothness of the forward function, or
more than one qualitatively different kind of behavior. In either case, decomposing the input into regions with rela-
tively more smooth functional behavior is a key for building more accurate surrogates. This type of multi-resolution
analysis leading to local PC representations could be prohibitively expensive in high-dimensional settings if the input
domain is decomposed in a brute-force fashion, parallel to axes [17–19]. More advanced methods that “tile” the input
domain appropriately based on discontinuity detection algorithms also suffer from the curse of dimensionality, mainly
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FIG. 12: Illustration of the iterative BCS algorithm for an80-dimensional cosine test function withN = 10000
training points. The closeness of validation and training errors indicates that a robust model is obtained with a relative
error of∼1%, while using much fewer basis terms than the corresponding total-order basis.

due to difficulties associated with representations of high-dimensional discontinuity manifolds [20, 38]. Instead, in this
work we employ a data-driven decomposition based on a clustering method informed by the values of the function
outputs. Below we propose formal steps to build a piecewise PC surrogate enhanced with training dataset clustering.
For simplicity, we describe a two-cluster case—the generalization to a multi-cluster PC expansion is straightforward.

• Cluster the training dataset into nonoverlapping subsetsD1 andD2, within each of which the behavior of the
function is better suited for a polynomial approximation.

• Construct global PC expansionsgi(ξ) =
∑

k cikΨk(ξ) using each dataset individually (i = 1, 2).

• Declare a piecewise-PC surrogate

gs(ξ) =

{
g1(ξ) if ξ ∈ D1

g2(ξ) if ξ ∈ D2.
(31)

The initial division of the samples into two or more clusters is problem-dependent but has the overarching goal of
making each cluster of samples more amenable to a smooth representation.Note that the last step (31) requires
a classification mechanism, since one needs to determine which clusterξ belongs to. We apply the random decision
forest (RDF) algorithm that is the state-of-the-art in machine learning and suits particularly well for high-dimensional,
sparse datasets, in terms of both accuracy and computational complexity [25].The RDF classification algorithm
essentially generates an ensemble of decision trees that classify a given point to one of the clusters by recursively
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splitting the input space parallel to the axes. The decision reported by RDF then is the “majority vote” of these
decision trees.

It is implicitly assumed that the regionsD1 andD2 are connected, i.e., do not consist of separated subregions.
In the latter case, although one could build a global PC expansion over a nonconnected region, it is preferable to
generalize the algorithm to the larger number of clusters.

Below we will illustrate the piecewise-PC construction and describe its advantages and drawbacks based on an
example that shows behavior similar to our main application from Section 6. Namely, let us take the following bivariate
function:

f(ξ1, ξ2) = e
∑2

i=1 ci|ξi|(ξ3
2 − ξ1)+, (32)

wherec1 = 1, c2 = 0.25, andx+ = x if x > 0 and vanishes otherwise. The function is continuous, but it goes through
a nonsmooth transition when crossing the curveξ3

2 = ξ1. Let us assign all samples that lead to a nonzero output to the
clusterD1, while the rest of the samples are assigned to the clusterD2. Clearly, the PC expansion forD2 is a trivial
one,g2(ξ) = 0. The PC expansion forD1 is a globalpth-order expansiong1(ξ). However, one only retains its values
corresponding to inputsx that are classified as belonging toD1. Figure 13 illustrates the piecewise-PC surrogate
constructed based on150 training points. Note, however, that in high-dimensional problems, one should be aware of
misclassification errors when comparing the surrogate model to the full model runs. More detailed discussion on this
issue is relegated to Section 6.

6. APPLICATION TO THE CLM

The main motivational model for the algorithmic development in the previous sections is CLM-CN, the commu-
nity land model with carbon/nitrogen biogeochemistry [39], which employs a nested computational grid hierarchy
designed to represent the spatial heterogeneity of the land surface. Each computational cell can be composed of mul-
tiple land units (e.g., ice, vegetation, or urban area), each land unit can incorporate one or more independent soil
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FIG. 13: Illustration of a two-dimensional response surface where a global PC expansion is enhanced by a classifica-
tion in order to alleviate the effects of nonlinearities in the forward function.
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columns, and each vegetated soil column may contain multiple plant functional types (PFTs). CLM-CN is a state-of-
the-art land surface model and has been used both offline and as part of the fully coupled community Earth system
model (CESM) to make future climate projections [40]. CLM-CN generally performs well against global benchmark
datasets, both for offline simulations [41, 42] and within fully coupled simulations [43]. Here we perform offline
simulations driven by site-observed meteorology at a single computational cell centered over the Niwot Ridge flux
tower site in Colorado [44], modeled as a single plant functional type: temperate evergreen needleleaf forest. The
results presented are steady-state vegetation produced by cycling present-day climate; past disturbances are not in-
cluded. For these simulations at a single site for a 100-year horizon, the computational costof a single simulation
is quite high—approximately 10 h on a single processor. A total of 39 PFT-level physiology parameters exist in an
input file, and an additional 42 constants primarily controlling soil, hydrology, and phenology processes were pulled
out of the code and recast as input parameters. Thus the number of input parameters that control the model behavior
is 81 in this case; see Tables 1 and 2. Clearly, such an expensive and high-dimensional model would benefit from a
surrogate construction to enable sensitivity analysis or to perform optimization or calibration. However, building the
surrogate involves several challenges indicated earlier in this paper: e.g., the curse of dimensionality, as well as the
computational cost, and, therefore, the sparsity of model runs.

6.1 Generation of Input Parameter Ensembles

Tables 1 and 2 present the list of model input parameters explored in our study. Beside range restrictions, the input
parameters need to satisfy the following constraints, by definition, or in order to remain consistent with associated
physics:

λ18 < λ22,

λ30 + λ31 + λ32 = 1, (33)

λ33 + λ34 + λ35 = 1.

For example, Fig. 14 illustratestwo sets of1000 uniform samples on polygons that are obtained due to constraints
λ33 + λ34 + λ35 = 1 andλ18 < λ22, respectively.

In order to have proper coverage of the input parameter space that respects the constraints and uses all available
information, the training set of input parameters is taken to be uniformly distributed on the constrained space. This is
consistent with the maximum entropy principle, see [32].

In order to generally map a constrained input space to an unconstrained one, we introduce a transformation that
maps the input parameter vectorλ with dependent or constrained components to a vector ofi.i.d. uniform variables
ξ. For this purpose, we use the Rosenblatt transformation [45], which is essentially a generalization of the standard
cumulative distribution function (CDF) transformation to multiple dimensions.

To clarify the upcoming notation, let us remove one input parameter from the triple(λi, λj , λk) for each constraint
of a formλi + λj + λk = 1, since one of the parameters in the triple is completely determined by the other two. With
the appropriate shifting of the indices, we will be left withd = d̃ − nt input parameters, wherent is the number of
input parameter triples that sum up to one. In the present study,nt = 2 and therefored = 79.

Now, given a vector of random variablesλ = (λ1, . . . , λd) with known joint CDFF (λ1, . . . , λd), one can obtain a
set ofξi’s that are independent uniform random variables on[−1, 1] for all i = 1, 2, . . . , d, using thescaledconditional
cumulative distributions

ξ1 = R1(λ1)
ξ2 = R2|1(λ2|λ1)
ξ3 = R3|2,1(λ3|λ2, λ1) (34)

...

ξd = Rd|d−1,...,1(λd|λd−1, . . . , λ1).
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TABLE 1: CLM input parameters: Part one
Notation Name Default Min Max Units Description

λ1 displar 0.67 0.1 1 m displacement length: canopy top
λ2 dleaf 0.04 0.01 0.1 m characteristic leaf dimension
λ3 mp 6 3 16 none slope of conductance to photosynthesis
λ4 qe25 0.06 0.04 0.08 umol C/umol phot Quantum efficiency
λ5 rholvis 0.07 0.01 1 none leaf reflectance (vis)
λ6 rholnir 0.35 0.01 1 none leaf reflectance (nir)
λ7 rhosvis 0.16 0.01 1 none stem relectance (vis)
λ8 rhosnir 0.39 0.01 1 none stem reflectance (nir)
λ9 taulvis 0.05 0.01 1 none leaf transmittance (vis)
λ10 taulnir 0.1 0.01 1 none leaf transmittance (nir)
λ11 tausvis 0.001 0.0001 0.01 none stem transmittance (vis)
λ12 tausnir 0.001 0.0001 0.01 none stem transmittance (nir)
λ13 xl 0.01 0.01 1 none leaf/stem orientation index
λ14 rootapar 7 1 20 m-1 rooting distribution parameter
λ15 rootb par 2 0.5 10 m-1 rooting distribution parameter
λ16 slatop 0.01 0.08 0.12 m2/gC SLA at top of canopy
λ17 dsladlai 0.0012 0.001 0.007 m2/gC/LAI SLA/dLAI
λ18 leafcn 35 23 70 gC/gN leaf C to N ratio
λ19 flnr 0.05 0.04 0.1 none frac of leaf N in Rubisco
λ20 smpso −66,000 −120,000 −20,000 mm soil water pot. at full opening
λ21 smpsc −255,000 −300,000 −120,000 mm soil water pot. at closure
λ22 lflitcn 70 39 143 gC/gN leaf litter C:N
λ23 frootcn 42 25 85 gC/gN fine root C:N
λ24 livewdcn 50 25 75 gC/gN live wood C:N
λ25 deadwdcn 500 200 1400 gC/gN dead wood C:N
λ26 froot leaf 1 0.3 5 gC/gC new fine root alloc C /leaf C
λ27 stemleaf 1.5 0.6 5.3 gC/gC new stem alloc C per leaf C
λ28 croot stem 0.3 0.1 0.7 gC/gC new croot alloc C per stem C
λ29 flivewd 0.1 0.06 0.28 none fraction of new wood that is live
λ30 lf flab 0.25 0.14 0.54 none leaf litter labile fraction
λ31 lf fcel 0.5 0.37 0.49 none leaf litter cellulose fraction
λ32 lf flig 0.25 0.1 0.38 none leaf litter lignin fraction
λ33 fr flab 0.25 0.18 0.25 none fine root labile fraction
λ34 fr fcel 0.5 0.38 0.5 none fine root cellulose fraction
λ35 fr flig 0.25 0.16 0.36 none fine root lignin fraction
λ36 leaf long 1.5 2 10 yr leaf longevity
λ37 resist 0.12 0 0.5 none fire resistance index
λ38 grperc 0.3 0.2 0.4 none growth respiration factor 1
λ39 grpnow 1 0 1 none growth respiration factor 2
λ40 bdnr 0.25 0 0.8 (1/s) bulk denitrification rate

Each mapR∗(·) is a scaled version of the corresponding CDFF∗(·) to ensureξi ∈ [−1, 1]. That is,R1(λ1) =
2F1(λ1)− 1 and, similarly, for the rest of the conditional CDFs in (34).

This map, denoted by the shorthand notationξ = R(λ), is called theRosenblatt transformation(RT) [45]. Note
that the RT is not unique: by ordering theλi’s in different ways, one can obtaind! different sets of uniform random
variables.
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TABLE 2: CLM input parameters: Part two
Notation Name Default Min Max Units Description

λ41 dayscrecover 300 1 90 days days to recover negative cpool
λ42 rc npool 100 0.5 50 none resistance for uptake from plant npool
λ43 br mr 2.53e− 06 4e− 07 1e− 05 gC/gN/s base rate for maintenance respiration
λ44 q10 mr 1.5 1 4.5 none q10 for maintenance respiration
λ45 cn s1 12 8 20 gC/gN carbon:nitrogen for SOM 1
λ46 cn s2 12 8 20 gC/gN carbon:nitrogen for SOM 2
λ47 cn s3 10 6 20 gC/gN carbon:nitrogen for SOM 3
λ48 cn s4 10 6 20 gC/gN carbon:nitrogen for SOM 4
λ49 rf l1s1 0.39 0.35 0.45 none resp. fraction for litter 1→ SOM 1
λ50 rf l2s2 0.55 0.385 0.715 none resp. fraction for litter 2→ SOM 2
λ51 rf l3s3 0.29 0 0.9 none resp. fraction for litter 3→ SOM 3
λ52 rf s1s2 0.28 0.26 0.3 none resp. fraction for SOM 1→ SOM 2
λ53 rf s2s3 0.46 0.032 0.6 none resp. fraction for SOM 2→ SOM 3
λ54 rf s3s4 0.55 0 1 none resp. fraction for SOM 3→ SOM 4
λ55 k l1 1.2 0.9 1.5 1/day decomp rate for litter 1
λ56 k l2 0.0726 0.05 0.1 1/day decomp rate for litter 2
λ57 k l3 0.0141 0.005 0.028 1/day decomp rate for litter 3
λ58 k s1 0.0726 0.038 0.11 1/day decomp rate for SOM 1
λ59 k s2 0.0141 0.005 0.022 1/day decomp rate for SOM 2
λ60 k s3 0.0014 0.0004 0.005 1/day decomp rate for SOM 3
λ61 k s4 0.0001 0 0.0004 1/day decomp rate for SOM 4
λ62 k frag 0.001 0.0002 0.005 1/day fragmentation rate for CWD
λ63 cwd fcel 0.769 0.66 0.81 none fraction of cellulose in CWD
λ64 dnp 0.01 0.001 0.1 none denitrification proportion
λ65 minpsi hr −10 −15 −5 MPa minimum psi for heterotrophic resp
λ66 q10 hr 1.5 1 4.5 none q10 for heterotrophic respiration
λ67 r mort 0.02 0.002 0.2 1/year mortality rate
λ68 sf minn 0.1 0.02 0.4 none solulble fraction of mineral N
λ69 crit dayl 39,300 35,000 45,000 seconds critical daylength for senescence onset
λ70 ndayson 30 5 60 days no. of days to complete leaf onset
λ71 ndaysoff 15 5 40 days no. of days to complete leaf offset
λ72 fstor2tran 0.5 0.1 1 none fraction of strage to move to transfer
λ73 crit onsetfdd 15 5 30 days no. of freezing days to set GDD counter
λ74 crit onsetswi 15 5 30 days no. of water stress-free days for leaf onset
λ75 soilpsi on −2 −5 −0.75 MPa critical soil water potential for leaf onset
λ76 crit offset fdd 15 5 30 days no. of freezing days for leaf offset
λ77 crit offset swi 15 5 30 days no. of water stress days for leaf offset
λ78 soilpsi off −2 −5 −0.75 MPa critical soil water potential for leaf offset
λ79 lwtop ann 0.7 0.5 1 1/year live wood turnover proportion
λ80 gddfuncp1 4.8 3 7 none gdd threshold parameter 1
λ81 gddfuncp2 0.13 0.05 0.3 none gdd threshold parameter 2

The inverse of the RT will be employed to map the unconstrainedξ space (i.e.,[−1, 1]d) to the space of CLM
input parameters to perform proper sampling of the constrained input space. Namely, we sampledN ′ = 10,000
uniform i.i.d. random values on the79-dimensionalξ space, using LHS to ensure good coverage of the space. These
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FIG. 14: An illustration of 1000input parameter samples for some of the constrained inputs with their range given in
Tables 1 and 2,obtained via the inverse Rosenblatt transformation.

samples correspond to10,000 sets of input parameter vectors for CLM, each of size81. However,17 runs failed or
crashed during forward model simulation, resulting in an effective set ofN = 9983 samples. With the Rosenblatt
transformation in place, one can build a PC-based surrogate with respect toξ, as described in Section 2.

We applied the iterative BCS algorithm for polynomial basis reduction, described in Section 4, to the CLM with
five output quantities of interest (QoI), shown in Table 3. For each QoI, a10-year average at the end of a100-year
CLM simulation is taken.

Let us study the leaf area index (output LAI) more closely. Figure 15 illustrates all the available model simulation
results, on the log-axis. Notice the clear separation of the output values. Many simulations either lead to vanishing
LAI, or to a small value that is believed to converge to zeroif the simulations were run for a longer time horizon. While
our ongoing work includes more robust, longer-term CLM simulations, for the present purpose we will categorize all
runs withLAI < LAIthr = 0.3 as effectively leading to a dead vegetation state. The choice of threshold value
is somewhatad hoc: the sorted simulation plot in Fig. 15(b), as well as preliminary tests, suggested the value of
LAIthr = 0.3. Also, as these log-axis plots suggest, the logarithm of the LAI is considered for PC surrogate building
purposes. Besides the fact that the logarithm of this dataset looks more amenable to a polynomial representation, it
also ensures that the resulting surrogate model for LAI stays non-negative.

Therefore, we obtain a two-regime surrogate for this QoI:

LAI(λ) =

{
exp(

∑K−1
k=0 ckΨk(ξ)) if ξ ∈ D

0 otherwise
, (35)

whereD is the input parameter region that leads to a nonzero LAI. Recall that the CLM parametersλ and the PC
surrogate argumentsξ are related via the Rosenblatt transformationξ = R(λ). In order to determine whether the

TABLE 3: CLM output quantities of interest
Notation Name Units Description

y1 LAI none Leaf area index
y2 TOTVEGC gC/m2 Total vegetation carbon
y3 GPP gC/m2/s Gross primary production
y4 HR gC/m2/s Heterotrophic respiration
y5 FPSN mmol/(m2 s) Photosynthesis
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FIG. 15: The dataset for the outputLAI, corresponding to9983 CLM simulations. The dataset is clustered into two
categories, below the threshold0.3 it is believed that the simulations correspond to a dead vegetation state, in the
long run. The sorted plot on the right also suggests that there is a “kink” near the threshold value below which a
qualitatively different outcome is expected.

point of interestξ belongs toD, the RDF algorithm [25] for classification is launched,as described in Section 5.
However, having no more than10,000 samples in a79-dimensional space leads to an approximately15% likelihood
of misclassification.

The basis selection and proper coverage of all possible bases for the expansion in (35) needs special attention
for such a high-dimensional system. For example, note that a total-degree expansion of order3 includes almost105

polynomial terms. It is expected that using a more flexible, HDMR-structured basis set would be helpful, as physical
models tend to be most influenced by lower-dimensional input interactions [46, 47]. Accordingly, our initial basis set
choice for the iterative BCS algorithm described in Section 4, is an HDMR basis set with maximal order pair(9, 2),
i.e., univariate bases of orders up to9 (a total of79 ·9 = 711 terms) and bivariate terms of total order up to2 (a total of
78× 79/2 = 3160 terms of the formξiξj for i, j = 1, . . . , 79 andi < j). Together with the constant basis term, this
leads to an initial basis of sizeK1 = 3793. Further, in order to control the number of basis terms and avoid overfitting,
we employ a modified approach compared to Section 4, as follows. At each iteration, we (1) take a less conservative
order addition scheme where one adds the higher-dimensionaladmissiblecoupling terms while also adding all terms
up to total order9 on the current selected basis; and (2) retain only the first1000 selected basis terms. The iBCS
approach is then carried forward for 3 iterations with a final result of1000 basis terms.

However, since only about a third of the CLM simulations leads to nonzero outputs, the resulting dataset is sparse
given the79-dimensional space, and a1000-term basis set necessarily leads to overfitting and poor predictive qualities.
Therefore, we further adjust our use of iBCS to further guard against overfitting by retaining only those terms that
are mostrobustlysupported by the data. This is done as follows. We randomly choose10 different data subsets, each
with 9000 data points out of the full set of9983 samples, and apply the iBCS algorithm to each dataset. Then, we
retain only the basis polynomials that are selected ineachof the10 replica runs. As Fig. 16(a) illustrates, out of more
than8000 basis terms that appeared at least once, only a small subset of69 terms is consistently picked. Figure 16(b)
shows that the coefficients associated with the retained terms do not fluctuate much, confirming the robustness of
this truncated basis set. Subsequently, we apply a single, noniterative BCS step using all9983 data points and this
truncated basis set in order to find PC coefficients corresponding to these bases. This last application of BCS uses the
default stopping criterionε = 10−9 and does not remove any more basis terms.

Figure 17 demonstrates a typical outcome of the algorithm, except for the fact that we set aside983 validation
points merely for illustration and use the rest of the samples and the truncated basis set for the surrogate construction.
The piecewise-PC surrogate is indicated by the red dots and the samples are ordered according to the values of the
surrogate. The gray region corresponds to the5%−95% quantiles of the posterior predictive distribution. The posterior
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FIG. 17: Comparison between a validation dataset and the corresponding piecewise-PC model predictions. The80-
dimensional input is ordered according to the mean of the predictions (red dots). The gray region indicates5%− 95%
confidence region for the predicted values according to the posterior predictive distribution, while the black dots show
the corresponding CLM outputs. Note that about15% points are misclassified.

predictive distribution is a combination of the discrepancyσ and the “pushed-forward” posterior, i.e., the distribution
that arises for the output, given the posterior distribution on the PC coefficients. Thus, since the coefficient vector
c of a PC expansiongc(ξ) =

∑K−1
k=0 ckΨk(ξ) has a multivariate normal distribution with meanµ and covariance
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matrixΣ, see (21), then the expansion itself is a Gaussian process with meanm(ξ) and covariance functionC(ξ, ξ′)
from (23) and (24), respectively. The posterior predictive distribution at each fixedξ∗ will therefore be a Gaussian
with meanm(ξ∗) and varianceσ2 + C(ξ∗, ξ∗). Indeed, by definition [48], the posterior predictive distribution is the
distribution of a hypothetical new data pointf∗ = f(ξ∗) given the current dataset of model simulations, marginalized
over the PC parameter posterior distribution, i.e.,

ppp(f∗) =
∫

p(f∗|D, c)q(c)dc (36)

=
∫

1
σ
√

2π
exp

(
− (f∗ − gc(ξ∗))2

2σ2

)
1

(2π)K/2|Σ| exp
(
−1

2
(c− µ)T Σ−1(c− µ)

)
dc,

which, after some rearranging, allows integratingc out, leading to

ppp(f∗) ∝ exp
(
− 1

2(σ2 + C(ξ∗, ξ∗))
(f∗ −m(ξ∗))2

)
, (37)

wherem(ξ) andC(ξ,ξ′) are defined in (23) and (24).
However, note that the surrogate was built for the logarithm of the observable, hence the posterior predictive

distribution, the quantiles of which are illustrated in Fig. 17, is lognormal on the points that are classified as vegetation-
growth points. The posterior predictive distribution can further be invoked in probabilistic calibration studies, as it
essentially encapsulates probabilistic prediction of the CLM output at input valueξ.

The misclassification of15% of points is a direct consequence of not having enough training simulations. With
less than10,000 points in an80D space, it is difficult to expect an improvement in the value of the misclassification
factor f ≈ 0.15. A simple order-of-magnitude argument is useful to illustrate this point. Consider a hypothetical
approximationz∗(ξ) to a functiong(ξ) that is within a relative errorε at each point, i.e.,|z∗(ξ)− z(ξ)|/|z(ξ)| ≈ ε,
for all values ofξ. This leads toEv ≈ ε according to (25). Misclassification, however, introducesfN terms that are
of O(1) in the numerator of (25). Taking into account the normalization of theL2 norm, one arrives at the estimate
Ev ≈

√
f . Therefore, we note that the relativeL2 error will at least beO(

√
f) ≈ 0.4 purely due to misclassification,

hence there is not much use of invokingEv to evaluate the predictive fidelity of the model. One can compute posterior
predictive scores instead [49], to measure how predictive the resulting PC surrogate is. In principle, the uncertainty
range of the posterior predictive distribution should reflect the spread in the data. In our case, it does, as can be seen
from Fig. 17, except for the points that are misclassified.

The resulting surrogate allows the extraction of global sensitivity information from the piecewise PC representa-
tion. Having built the PC-based surrogate over a range of variation of input parameters, one can extract variance-based
sensitivity information. The main effect sensitivity indicesSi are defined as

Si =
Var[E(gc(ξ)|ξi)]

Var[gc(ξ)]
, (38)

for i = 1, . . . , d, while the joint sensitivity indicesSij are

Sij =
Var[E(gc(ξ)|ξi, ξj)]

Var[gc(ξ)]
− Si − Sj , (39)

for i, j = 1, . . . , d. These are the so-called Sobol indices [3, 4]. While the posterior distributions for the PC modesc
are available, we rely on their mean estimates for the computation of these indices,noting that one can in principle
associate uncertainties with the sensitivity indices by “pushing” the posterior distribution ofc forward through formu-
las (38) and (39).The variances in the numerators of (38) and (39) are with respect to the fixed variablesξi or (ξi, ξj),
while the expectations are with respect to the rest of the variables. The sensitivity indexSi can be interpreted as the
fraction of the variance in the output that can be attributed to theith input only, whileSij is the variance fraction that
is due to the joint contribution ofith andjth inputs only. While there are exact formulas for extracting such sensitivity
information from a plain PC expansion

∑K−1
k=0 ckΨk(ξ), in our context we needed to resort to Monte Carlo estimates
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of (38) and (39) because of the log-transform as well as a classification step in (35). Indeed, the Sobol indices (38)
and (39) can be written in integral forms, but these integrals will not be analytically tractable for irregular domains
that appear in the input parameter space due to classification. Monte Carlo estimates themselves are enhanced by
techniques described in [50] allowing efficient estimation of conditional variances in the sensitivity formulae above.

The sensitivities are illustrated in Fig. 18 and are computed in the following way. One first generates two sets ofM
independent, uniform input samples. Besides these two sets, the piecewise-PC surrogate model is evaluated at sample
sets that are obtained when one replaces one (for main effect sensitivities) or two (for joint sensitivities) dimensions
of the first set by the corresponding values of the second set [50]. This leads tok more sets, each withM samples,
wherek is the number of indices to be computed. Therefore, a total of(k + 2)M surrogate model evaluations are
required. For the main effect sensitivity indicesk = d andM = 100,000. However, even with such a large number
of samples, only the sensitivity indices with larger magnitudes are computed accurately. Therefore, we down-select
the input parameters based on the main effect indices, retaining only the ones above10−3, and compute the joint
sensitivity indices only for pairs involving the most important parameters, i.e.,k = d′(d′ − 1)/2, whered′ = 18
in this particular case of output LAI. Finally, we usedM = 10,000 independent Monte Carlo samples for the joint
effect sensitivities.We note that for all outputs the main and joint effect sensitivities summed up to approximately0.9,
indicating that most of the dependences are captured within these indices.

Figures 19 and 20 illustrate results for four more outputs of interest from Table 3. These outputs are quite correlated
with each other, therefore it is expected that the most important input parameters are generally shared between all the
outputs. Indeed, as Fig. 21 demonstrates, the more important parameters are generally shared between the outputs.
There are only21 input parameters that have main effect sensitivity indices for at least one output over a threshold
10−3. This provides a significant dimensionality reduction mechanism and can serve as a basis for further, more
accurate studies on lower-dimensional input parameter space.

Quantifying the sensitivity of the model outputs to the input parameters yields important insights about CLM. We
find that the three most important parameters for all QoIs are leafcn (leaf carbon to nitrogen ratio), flnr (fraction of
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(a) TOTVEGC: posterior prediction
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(b) TOTVEGC: sensitivity information
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(c) GPP: posterior prediction
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(d) GPP: sensitivity information

FIG. 19: Posterior predictive and sensitivity analysis results for outputs TOTVEGC and GPP.The color bars corre-
spond to the natural logarithmic axis.

leaf nitrogen in RuBisCO, the primary enzyme used in photosynthesis), and rcnpool (a resistance term or buffering
factor for the internal plant nitrogen pool). These parameters are primary controls on plant photosynthetic capacity
for a given leaf area, with leafcn and flnr basically controlling the amount of chlorophyll and the rcnpool parameter
controlling the nitrogen limitation factor. The parameters frootleaf and stemleaf control the allocation of photo-
synthate to the fine root and stem relative to leaf carbon, respectively, and are important drivers of the equilibrium
LAI. Leaf longevity leaf long also plays a key role in equilibrium LAI by controlling the balance between growth and
turnover. Finally, rmort (plant mortality rate) is a strong control on equilibrium total vegetation carbon (TOTVEGC)
and LAI. The mortality rate represents plant death due to natural causes other than fire or harvest, which are repre-
sented separately, and controls the amount of biomass that is allowed to build up in the system before turning over to
litter.
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(a) HR: posterior prediction

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Input Parameters

In
p

u
t 

P
a

ra
m

e
te

rs

 

 

−8

−7

−6

−5

−4

−3

−2

(b) HR: sensitivity information
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(c) FPSN: posterior prediction
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(d) FPSN: sensitivity information

FIG. 20: Posterior predictive and sensitivity analysis results for outputs HR and FPSN.The color bars correspond to
the natural logarithmic axis.

7. DISCUSSION AND FUTURE WORK

In this work, we have implemented a polynomial chaos (PC) surrogate construction that is specifically tuned for high-
dimensional problems. Inspired by the community land model (CLM) that takes very high-dimensional input and is
computationally expensive, we presented a sparse learning technique to select the most important basis terms in PC
spectral expansions that represent the input-output relationship. While the idea of compressive sensing to find sparse
representations is not new and is extensively used in the image processing community, it has only recently gained
momentum in the context of spectral expansions. The availability of only a sparse set of model simulations motivates
the use of Bayesian machinery in order to derive robust predictions with uncertainties associated with lack of knowl-
edge. Starting from the Bayesian compressive sensing (BCS) methodology we extended its use to polynomial bases,
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FIG. 21: Main effect sensitivity indices for five outputs of interest. For each output, a log scaling is applied and the
sensitivities are shifted so that the maximal value of the log sensitivity is zero, for clarity of the color map presentation.
The input parameters that have sensitivities above a threshold value10−3 for at least one of the outputs are shown.

as well as enhanced it with an iterative procedure that allows dimensionality reduction and accuracy/order improve-
ment within each iteration. Another characteristic feature of the forward function, i.e., the input-output relationship,
of CLM, is the presence of two qualitatively different regimes—dead and live vegetation regions. In order to accom-
modate such behavior with smooth, polynomial bases, we developed a clustering- and classification-based piecewise
PC construction.

We concluded the CLM analysis by extracting variance-based global sensitivity information from the piecewise-
PC model. Equipped with such knowledge, our future work will be focused on building input ensembles on lower-
dimensional input spaces that will carry more information about the forward model itself. The surrogates derived from
these ensembles will have higher predictive fidelity and will eventually serve for calibration purposes.

Note that the BCS algorithm, although heavily relying on the evidence maximization, does not guard completely
against overfittingand may not truly maximize the evidence.However, validation error measures and proper tuning
of the BCS stopping criterion help to construct a sparse model that best explains the available sparse data.Whether
the fixed-hyperparameter formulation is a good approximation to the full hierarchical Bayes formulation with Laplace
priors is outside the scope of the paper and is a matter of future work. We are exploring the relationship between
model selection with BCS and Bayes factors (BF) that rely on the exact evidence maximization and the principle
of parsimony.While the basis addition and robust model selection for the CLM includes somead hoc, problem-
dependent analysis, the general workflow we propose here allows building sparse models semiautomatically given a
set of only few training simulations in a high-dimensional input space.
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