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ABSTRACT: Mucosa-associated invariant T cells (MAIT cells) are unconventional, innate-like T lymphocytes with 
remarkable effector and immunoregulatory functions. They are abundant in the human peripheral blood and also enriched 
in mucosal layers and in the lungs, SARS-CoV-2’s main ports of entry. Once activated, MAIT cells produce inflammatory 
cytokines and cytolytic effector molecules quickly and copiously. MAIT cells are best known for their antibacterial and 
antifungal properties. However, they are also activated during viral infections, typically in a cytokine-dependent manner, 
which may promote antiviral immunity. On the other hand, it is plausible to assume active roles for MAIT cells in infec-
tion-provoked cytokine storms and tissue damage. SARS-CoV-2 infection may be asymptomatic, mild, severe, or even 
fatal, depending on sex, age, the presence of preexisting morbidities, and the individual’s immunological competence, or 
lack thereof, among other factors. Based on the available literature, I propose that MAIT cells regulate the host response 
to SARS-CoV-2 and constitute attractive targets in the prevention or clinical management of coronavirus disease 19 
(COVID-19) and some of its complications. Unlike mainstream T cells, MAIT cells are restricted by a monomorphic 
antigen-presenting molecule called MHC-related protein 1 (MR1). Therefore, MR1 ligands should modify MAIT cell 
functions relatively uniformly in genetically diverse subjects and may be tested as immunotherapeutic agents or vaccine 
adjuvants in future studies. 
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I. INTRODUCTION

In December 2019, a pneumonia associated with 
a novel and highly contagious coronavirus called 
severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), hereafter referred to as CoV2, 
emerged in Wuhan, China. CoV2 is an enveloped, 
positive-sense, single-stranded RNA virus, to which 
there is no preexisting immunity, except perhaps 
in the case of cross-reactivity or prior exposures 
to similar viruses (e.g., common human corona-
viruses).1 CoV2 hijacks human angiotensin-con-
verting enzyme 2 (hACE2) in order to enter host 
cells.2 To date, the ongoing coronavirus disease 19 
(COVID-19) pandemic has resulted in more than 
5.5 million infections, claimed nearly 350,000 lives, 
and crippled the global economy. There is currently 
no vaccine or cure for COVID-19, and the manage-
ment of severe cases relies on supportive measures 
such as mechanical ventilation in the intensive care 
unit (ICU).3 

An effective vaccine should elicit highly spe-
cific adaptive immunity to CoV2 and immunological 
memory for future encounters with the same or an-
tigenically similar invaders. Equally important, vac-
cines save lives by helping achieve herd immunity at 
the population level.4 However, adaptive responses 
are never perfect and have their own limitations. For 
instance, they do not work equally in genetically di-
verse humans, due in large part to the polymorphic 
nature of human leukocyte antigen (HLA) class I 
and II molecules, which present antigenic peptides 
to conventional CD8+ and CD4+ T cells, respec-
tively. Activated CD8+ T cells primarily serve in the 
capacity of cytotoxic T lymphocytes (CTLs), and ef-
fector CD4+ T cells “assist” B cells in antibody (Ab) 
production. Also of note, adaptive responses decline 
in the old age,5 which is a risk factor for the severity 
of COVID-19 illness.6 Moreover, COVID-19 results 
in lymphopenia and T cell exhaustion, especially in 
older patients and in those requiring ICU care.7 Fi-
nally, CoV2-specific Abs may not be protective or 
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may even enhance the infection.8,9 Such hurdles are 
often inevitable and obviously should not dissuade 
the scientific community from pursuing optimal 
vaccines against COVID-19. In the meantime, while 
the entire world is still reeling from the pandemic’s 
dire consequences and vying for a vaccine, there has 
been increasing interest in targeting innate immune 
cells in search of a rapid remedy.

In this article, I will briefly introduce a subset 
of innate-like T cells, called mucosa-associated in-
variant T (MAIT) cells, which I propose may consti-
tute an attractive prophylactic or therapeutic target 
in COVID-19. I will highlight some of MAIT cells’ 
most remarkable antiviral, immunomodulatory, and 
inflammatory characteristics in support of this the-
ory and lay out some of the work that lies ahead for 
making MAIT cell–based interventions a reality of 
the future. 

II. MAIT CELLS IN BRIEF 

MAIT cells are unconventional T lymphocytes that 
circulate with high frequencies, comprising up to 
10% of all T cells, in the human peripheral blood. 
They are also enriched in the gut, in the lungs, and 
in the liver.10–13 

MAIT cells express a canonical T cell recep-
tor (TCR) α chain (Vα7.2-Jα33 in humans and 
Vα19-Jα33 in mice),14–16 which is paired with one of 
only a selected few TCR β chains to form a semi-in-
variant TCR (iTCR).17,18 The MAIT iTCR recognizes 
a unique array of compounds, including neoantigens 
containing vitamin B derivatives of microbial ori-
gin [e.g., 5-(2-oxopropylideneamino)-6-D-ribityl-
aminouracil (5-OP-RU)]19–21 and certain drugs, drug 
metabolites, and drug-like molecules,22 in the con-
text of a monomorphic protein called MHC-related 
protein 1 (MR1).23 Most MAIT cells express CD8 

as their co-receptor for antigen (Ag) and display a 
CD45RO+CD62Llow effector memory-like pheno-
type.10 They are the predominant population among 
CD3+Vα7.2+CD161hi cells and can be accurately 
identified using 5-OP-RU-loaded MR1 tetramers 
that bind specifically to MAIT cell iTCRs.18,24 

Once activated, MAIT cells produce a variety of 
inflammatory mediators, including T helper (TH)-1-
type, TH2-type, or TH17-type cytokines (e.g., IL-2, 

IFN-γ, TNF-α, IL-4, IL-5, IL-13, IL-17A, IL-22) 
and cytolytic molecules.25,26 These mediators en-
able MAIT cell participation in host defense and in 
immunoregulatory feedback and feedforward loops 
either to the benefit or to the detriment of the host. 
It is thus not surprising that protective or pathogenic 
roles for MAIT cells have been demonstrated or sug-
gested in various diseases and conditions, including 
infectious diseases,27–29 sepsis,30 toxic shock,31 al-
lergy,32 autoimmunity,33 and malignancy.34,35 Recent 
evidence suggests that MAIT cells can also operate 
in an MR1-dependent fashion to promote tissue 
repair.36–40 

III.  MAIT CELL RESPONSES TO VIRAL 
PATHOGENS

Viruses lack the vitamin B biosynthesis machin-
ery.27 However, they can activate MAIT cells in 
an MR1/iTCR-independent, cytokine-driven man-
ner. In vitro co-culture systems have revealed that 
MAIT cell activation by viruses typically requires 
IL-18 production by myeloid cells, often in syn-
ergy with IL-12 and/or other cytokines (e.g., IL-15 
and type I IFNs).41–43 Importantly, von Wilgenburg 
et al. demonstrated that MAIT cells primed by IL-
12 and IL-18 can suppress hepatitis C viral (HCV) 
replication in hepatocytes via an IFN-γ-dependent 
mechanism.41 

MAIT cell activation has been reported in hu-
man infections with hepatitis A virus,44 hepatitis 
B virus,44 HCV,41,45,46 dengue virus,41,43 influenza A 
virus (IAV),41 human T-lymphotropic virus type 1 
(HTLV-1),47 and more recently CoV2,48 sometimes 
accompanied by signs of cellular exhaustion. In ad-
dition, several groups have suggested that MAIT 
cell depletion during chronic infections with human 
immunodeficiency virus (HIV), HCV, or HTLV-1 
may be due to activation-induced cell death.47,49,50 
Residual MAIT cells may or may not retain their full 
capacity to respond to cognate bacterial ligands.51–53 
Regardless, a numerical shortage in the MAIT cell 
compartments of patients with chronic viral infec-
tions is likely to render them prone to opportunistic 
bacterial and fungal infections. 

Loh et al. found peripheral blood MAIT cell fre-
quencies to be higher in hospitalized patients who 
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recovered from avian H7N9 IAV pneumonia than in 
those who succumbed to the infection,42 suggesting 
a beneficial role for MAIT cells during acute IAV 
infection. More recently, MAIT cells were shown to 
accumulate in the lungs of IAV-infected mice, where 
they expressed elevated levels of CD69, CD25, and 
granzyme B.54 Importantly, adoptive transfer exper-
iments documented a protective role for MAIT cells 
during in vivo IAV infection.

MAIT cells in patients with viral infections may 
exhibit increased expression of cytolytic molecules. 
However, whether such “armed” effectors are capa-
ble of detecting and destroying virus-infected cells 
has yet to be experimentally demonstrated.25 

Collectively, MAIT cell behaviors during viral 
infections vary considerably, depending on the type 
of viral pathogens encountered, the acuteness or the 
chronicity of infection, and the tissue environment 
in which MAIT cells reside or amass.

IV. MAIT CELLS AS HEROES IN COVID-19?

MAIT cells are strategically located in mucosal 
layers and in the lungs, CoV2's main ports of en-
try, where they comprise up to 20% of all T cells 
in humans.13 Several facts and observations suggest 
potentially protective roles for MAIT cells during 
CoV2 infection (Fig. 1). First, MAIT cells appear 
to participate in host defense against certain other 
respiratory viruses, including IAVs.42,54 Second, they 
are considered “emergency responders” to infection 
by virtue of their effector memory-like character-
istics.10 Third, unlike conventional naïve T cells, 
MAIT cells express high levels of receptors for IL-
12 and IL-18,31,55 cytokines that are produced during 
infection with viral invaders, including CoV2 and 
other coronaviruses.48,56,57 In fact, IL-18 may predict 
and promote recovery from COVID-19.58 Fourth, 
once activated, MAIT cells upregulate IFN-γ and 
TNF-α among other cytokines and cytolytic effec-
tor molecules (e.g., granzymes),25 which should help 
eliminate CoV2 and accompanying pathogens. Fifth, 
MAIT cells recognize MR1 ligands harbored by a 
relatively wide spectrum of bacteria and fungi,27,28 
some of which are known causes of respiratory in-
fections. This function may serve to protect against 
superinfections, which may manifest as potentially 

deadly complications of COVID-19.59,60 Sixth, 
crosstalk between MAIT cells and other effector cell 
types with antiviral functions may be established, 
and MAIT cell stimulation may result in transactiva-
tion of downstream NK cells, invariant natural killer 
T (iNKT) cells, and CTLs,35,61 thus adding another 
layer to anti-CoV2 immunity. Seventh, MAIT cells 
participate in tissue repair mechanisms39 and may, 
as such, help expedite the recovery process in the 
aftermath of CoV2 infection.

According to a recent report by Jouan et al.,48 
MAIT cell frequencies drop in the peripheral blood 
but rise in the airways of critically ill COVID-19 pa-
tients. Importantly, higher CD69+ peripheral blood 
MAIT cell frequencies on day 1 post-admission 
were associated with reduced hypoxia on day 7. Al-
though more controlled studies on this subject are 
needed, this observation supports a beneficial, if not 
protective, role for MAIT cells in COVID-19. 

V. MAIT CELLS AS VILLAINS IN COVID-19?

Dysregulated MAIT cell responses to pathogens 
or their products can have inflammatory repercus-
sions for the host. We previously implicated MAIT 
cells as a major culprit in the immunopathogene-
sis of toxic shock syndrome (TSS) and its associ-
ated cytokine storm.31 We found that MAIT cells 
can launch a heavy-handed response to bacterial 
superantigens by producing very large quantities 
of proinflammatory cytokines, such as IFN-γ and 
TNF-α. Importantly, this response was predomi-
nantly mediated by IL-12 and IL-18, cytokines that 
are also abundantly produced during viral infec-
tions.48,56,57 COVID-19 should no longer be viewed 
as a merely geriatric problem linked with immu-
nosenescence or preexisting morbidities. It can also 
be catastrophic in otherwise healthy adults and in 
a small number of children who present with se-
rious inflammatory symptoms reminiscent of TSS 
and incomplete Kawasaki disease.62 The emerging 
syndrome of the afflicted children is now called 
the “pediatric multi-system inflammatory syn-
drome [potentially] associated with COVID-19”. 
Whether MAIT cells contribute to such and sim-
ilar manifestations should be considered in future 
investigations.
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It is becoming increasingly clear that COVID-19 
affects multiple organ systems with a possibil-
ity of immune-mediated collateral tissue damage. 
Excessive or prolonged cytokine production and 

cytotoxicity by MAIT cells may be particularly del-
eterious in tissues where MAIT cells are frequent 
and co-present with ACE2-expressing parenchy-
mal, stromal, and/or endothelial cells. These include 

FIG. 1: Mucosa-associated invariant T cells (MAIT cells) can play protective (heroic) roles, pathogenic (villainous) 
roles, or both in COVID-19. Infection of angiotensin-converting enzyme (ACE)2+ host cells by SARS-CoV-2 results 
in production of a number of cytokines, which likely include IL-12 and IL-18. MAIT cells respond to these cytokines 
by releasing inflammatory mediators of their own, such as IFN-γ and TNF-α. Some of these mediators should help 
clear SARS-CoV-2 infection, for instance through transactivation of natural killer (NK) cells, invariant natural killer 
T (iNKT) cells, and cytotoxic T lymphocytes (CTLs), among other mechanisms. Under certain circumstances and 
in certain tissue contexts, MAIT cells produce IL-17A, which facilitates the recruitment of neutrophils to the site 
of infection. Several other substances secreted by MAIT cells promote tissue repair and recovery. Once activated, 
MAIT cells also upregulate cytolytic effector molecules [e.g., granzyme (GZM) B], which destroy host cells infected 
by bacterial and fungal pathogens responsible for secondary infections. MAIT cells can engage and mature dendritic 
cells (DCs) through CD40L-CD40 and invariant T cell receptor (iTCR)-MHC-related protein 1 (MR1) interactions, 
thus promoting classic antigen presentation to mainstream T cells and antipathogen immunity. On the flip side, exces-
sive, untimely, or dysregulated MAIT cell activation and effector functions may lead to toxic shock syndrome–like 
manifestations, endothelial, stromal and parenchymal cell injury, direct or collateral organ damage, scarring and tissue 
fibrosis. 
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the lungs, the intestines, and the liver.63,64 ACE2 is 
widely expressed in respiratory and gastrointesti-
nal tracts. In the human liver, ACE2 expression is 
pronounced in cholangiocytes.65 Therefore, CoV2 
may directly attack cholangiocytes, thus reducing 
bile acid excretion and causing liver injury.66 On the 
other hand, NK cell-mediated, NKG2D-dependent 
destruction of cholangiocytes in rotavirus-induced 
biliary atresia has been previously described in a 
mouse model.67 Interestingly, Rha et al. recently 
found that circulating MAIT cells in patients with 
acute hepatitis A exhibited increased “innate” cy-
totoxicity, which was also mediated by NKG2D 
engagement and positively correlated with serum 
alanine aminotransferase levels, indicative of liver 
damage.44 Therefore, a hypothetical scenario can 
be envisaged in which CoV2 infection of ACE2+ 
cholangiocytes renders them susceptible to hepatic 
MAIT cell-mediated lysis, culminating in cholangi-
opathy and secondary hepatocyte injury. 

Finally, uncontrolled production of some of the 
mediators secreted by MAIT cells to fight infection 
may backfire and cause serious long-term morbid-
ities. For instance, IL-17A, a potent cytokine that 
mobilizes neutrophils to combat extracellular bac-
teria at mucosal sites, may exacerbate tissue in-
flammation and also has potential pro-tumorigenic 
properties.35,68 Moreover, the tissue repair and wound 
healing activities of MAIT cells,36–38,40 if sustained, 
may promote fibrosis and tumor growth.39 MAIT 
cells are potentially profibrogenic entities,69,70 and 
lung tissue scarring leading to pulmonary fibrosis 
has been suggested as a potential immune-mediated 
outcome of COVID-19.71,72 Firmly validating such 
theories will require the interrogation of the MAIT-
lung interface in long-term COVID-19 survivors. 

VI. MAIT CELL–BASED INTERVENTIONS

Before MAIT cells can be hailed as heroes or de-
nounced as villains in COVID-19, much remains to 
be learned about their behavior. Regardless of the 
nature of their roles across different age groups in 
the presence or absence of comorbidities, MAIT 
cell–based interventions may be fruitful. At this 
point, one cannot also rule out the possibility that 
MAIT cells play both beneficial and detrimental 

roles even within a patient, in which case exploring 
phase-tailored interventions may be warranted, in 
conjunction with our modalities. 

MAIT cells are reactive to a number of cyto-
kines, including but not limited to IL-18 and IL-
12.31,55 Therefore, temporary, dose-optimized, local 
administration of the right cytokine pairs or cock-
tails may be helpful in boosting antiviral immunity 
through MAIT cell activation. On the contrary, when 
MAIT cells are suspected of triggering or perpetu-
ating hyperinflammatory syndromes and cytokine 
storms, one may attempt to block the functions of cy-
tokines that activate or are secreted by MAIT cells.

The speed and the robustness with which innate 
and innate-like cells respond to pathogen-associated 
molecular patterns, microbial products, and various 
stimuli make them perfect targets when fast-acting 
therapies are urgently needed. It is thus not surprising 
that bacille Calmette-Guérin (BCG) administration 
has been attempted in frontline healthcare workers, 
with outcomes that have yet to be determined.73,74 
It is noteworthy that BCG activates MAIT cells28,75 
among other effects in potentiating “trained immu-
nity”. I propose that some of the beneficial effects of 
BCG in COVID-19, if confirmed, stem from their 
MAIT cell-stimulating activity.

MR1-binding, vitamin B-based MAIT cell ag-
onists (e.g., 5-OP-RU)19–21 and nonstimulatory li-
gands (e.g., acetyl-6-formylpterin [Ac-6-FP])21,76,77 
do exist. Nonmicrobial small molecules that bind to 
and downregulate MR1 have also been described.78 
Importantly, a number of available drugs and drug-
like molecules, metabolites, and fragments, such 
as salicylates and diclofenac metabolites, may be 
loaded onto MR1 and presented to MAIT cells.22 
Notably, diclofenac metabolites were demonstrated 
to activate MAIT cells. It is tempting to speculate 
a scenario in which such and similar drugs and 
compounds can be expeditiously repurposed for 
COVID-19, a possibility that can be readily tested 
in preclinical models.

MAIT cell-based therapies may offer two ad-
ditional advantages. First, given the monomorphic 
nature of MR1, its ligands may be used invariably 
in diverse human populations.79 Therefore, HLA re-
striction is not an obstacle to the feasibility of testing 
MR1 ligands as potential therapeutics. Moreover, 
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although circulating at lower frequencies, MAIT 
cells maintain their functional competence in the 
vulnerable elderly.80 Therefore, their optimal expan-
sion may boost anti-CoV2 immunity.

As immunologists, we often rely on mouse 
models. Unlike in humans, MAIT cells are scarce in 
conventional strains of laboratory mice.81 However, 
mouse MAIT cell populations can be expanded, for 
instance for adoptive transfer experiments.54 Mouse 
and human MAIT cells are more phenotypically and 
functionally similar than previously thought.18 In ad-
dition, MR1 and the MAIT iTCRα are evolutionarily 
conserved,23,82,83 and 5-OP-RU can be used to activate 
both mouse and human MAIT cells.19–21 Therefore, at 
least some of the results to be obtained in mouse stud-
ies of MAIT cells may be translatable to the clinic. 

Human ACE2-transgenic mice and wild-type 
BALB/c mice have been employed in COVID-19 
investigations.84 A hamster model of CoV2 infec-
tion may also be informative in protection studies,85 
despite the fact that experimental tools for hamster 
studies are not plentiful. Nevertheless, these rela-
tively simple animal models, along with the more 
complex and more appropriate nonhuman primate 
models of CoV2 infection, will be invaluable in 
drug safety and efficacy testing. The adjuvanticity 
and therapeutic effects of MAIT cell agonists need 
to be explored after their physicochemical attri-
butes, such as their stability and aqueous solubility, 
are improved for in vivo applications. Furthermore, 
whether and to what extent MR1 ligands may cause 
iTCR internalization could help determine the fre-
quency of their administration in multidose treat-
ment protocols. 

VII.  FUTURE DIRECTIONS AND CONCLUDING 
REMARKS

Recent years have witnessed intensifying inquiries 
into the significance of invariant T lymphocytes in 
health and disease. Much work still lies ahead to 
fully characterize the roles played by these cells in 
infectious diseases, including COVID-19, and their 
complications.

It will be pertinent to determine MAIT cell fre-
quencies and functions in longitudinal studies mon-
itoring the immune status of CoV2-infected subjects 

as they progress from an asymptomatic state to mild 
disease to either recovery or critical illness. Possi-
ble changes in MAIT cell frequencies or activation 
profiles may be potentially useful as prognostic bio-
markers. As indicated in previous sections, elevated 
percentages of circulating MAIT cells were associ-
ated with recovery from avian influenza,42 and their 
high expression levels of CD69, an activation and 
tissue retention marker, appeared to predict milder 
hypoxia in the course of COVID-19.48 Comprehen-
sive clinical investigations using large cohorts and 
mechanistic studies in relevant animal models will 
be required to address a presumptive link between 
MAIT cell functions and COVID-19 manifestations 
or outcomes.

Severe morbidity and mortality in COVID-19 
have been attributed to certain preexisting condi-
tions, such as obesity, diabetes, asthma, chronic 
obstructive pulmonary disease, hypertension, car-
diovascular disease, and malignancy.6,86–89 Numer-
ical or functional abnormalities in the MAIT cell 
compartment have also been reported in these con-
ditions.90–94 Although the immunopathogenesis of 
both COVID-19 and indicated predisposing condi-
tions are multifactorial, understanding how MAIT 
cells fit into this large and complex picture warrants 
further investigation. 

Different clinical manifestations of COVID-19 
at the two ends of the life spectrum are notable and 
need to be thoroughly investigated in both sexes. 
Epidemiological data point to the sexual dimor-
phism of COVID-19, with the male sex being a risk 
factor for increased disease severity.95 According 
to a meta-analysis of more than 200,000 patients, 
although the prevalence of confirmed COVID-19 
cases remained similar among men and women, 
male patients were at least twice more likely to re-
quire intensive care and also exhibited higher odds 
of death.96 A recent report has even suggested a 
link between the high androgen levels manifested 
by male androgenetic alopecia and the severity of 
COVID-19.97 Antipathogen immune responses dif-
fer quantitatively and qualitatively between the 
sexes, which is largely dictated by the differential 
regulation of defense mechanisms by male and fe-
male sex hormones. In general, while androgens 
suppress cell-mediated immunity, estrogens can 
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provide protection in severe infections and sep-
sis.98 A previous study found comparable MAIT cell 
levels among male and female healthy subjects.99 
However, an annual decline in circulating MAIT 
cell frequencies was more pronounced in men. Hor-
monal regulation of blood and tissue-resident MAIT 
cell homeostasis and functions will be an exciting 
line of inquiry.

It is important to discern how the physiological 
or pathological behaviors of MAIT cells can be al-
tered by their sequential stimulation with cytokines 
and MR1 ligands, and vice versa. A viral infection 
will expose MAIT cells to inflammatory cues and 
mediators, which may be followed by secondary 
infections with bacterial or fungal opportunists har-
boring MR1 ligands. On the other hand, researchers 
may choose to explore the possibility of expanding 
MAIT cells by MR1 ligands before or during an an-
tiviral cytokine response. The potential adjuvanticity 
of MR1 ligands in the general context of prophylac-
tic vaccination is another subject of interest. They 
may indirectly activate secondary antiviral effectors, 
such as NK cells, iNKT cells, and CTLs.35,61 MAIT 
cell stimulation can also lead to dendritic cell matu-
ration in an MR1- and CD40L-dependent fashion,100 
which should assist adaptive pathogen-specific CD4+ 
and CD8+ T cell responses. The hypotheses provided 
herein should be tested in future studies. 

COVID-19 is a rapidly evolving situation. As 
we learn more about the protective or pathogenic 
roles of various immune cell types in the course of 
the ongoing pandemic, our questions will also grow 
in number. MAIT cells possess powerful effector 
and regulatory functions and should be considered 
in prophylactic and therapeutic approaches. 
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