
Journal of Machine Learning for Modeling and Computing, 1(1):19–37 (2020)

LIMITATIONS OF PHYSICS INFORMED

MACHINE LEARNING FOR NONLINEAR

TWO-PHASE TRANSPORT IN POROUS

MEDIA

Olga Fuks* & Hamdi A. Tchelepi*

Department of Energy Resources Engineering, Stanford University, 367 Panama
Street, Stanford, California 94305, USA

*Address all correspondence to: Hamdi A. Tchelepi or Olga Fuks, Department of Energy
Resources Engineering, Stanford University, 367 Panama Street, Stanford, California
94305, USA, E-mail: tchelepi@stanford.edu; E-mail: ofuks@stanford.edu

Original Manuscript Submitted: 2/11/2020; Final Draft Received: 6/10/2020

Deep learning techniques have recently been applied to a wide range of computational physics prob-

lems. In this paper, we focus on developing a physics-based approach that enables the neural network

to learn the solution of a dynamic fluid-flow problem governed by a nonlinear partial differential

equation (PDE). The main idea of physics informed machine learning (PIML) approaches is to en-

code the underlying physical law (i.e., the PDE) into the neural network as prior information. We

investigate the applicability of the PIML approach to the forward problem of immiscible two-phase

fluid transport in porous media, which is governed by a nonlinear first-order hyperbolic PDE subject

to initial and boundary data. We employ the PIML strategy to solve this forward problem without

any additional labeled data in the interior of the domain. Particularly, we are interested in non-

convex flux functions in the PDE, where the solution involves shocks and mixed waves (shocks and

rarefactions). We have found that such a PIML approach fails to provide reasonable approximations

to the solution in the presence of shocks in the saturation field. We investigated several architectures

and experimented with a large number of neural-network parameters, and the overall finding is that

PIML strategies that employ the nonlinear hyperbolic conservation equation in the loss function

are inadequate. However, we have found that employing a parabolic form of the conservation equa-

tion, whereby a small amount of diffusion is added, the neural network is consistently able to learn

accurate approximation of the solutions containing shocks and mixed waves.

KEY WORDS: two-phase transport, physics informed machine learning, partial differ-
ential equations

1. INTRODUCTION

Machine learning (ML) techniques, specifically deep learning (LeCun et al., 2015), are at the
center of attention across the computational science and engineering communities. The spec-
trum of deep learning architectures and techniques has already achieved notable results across
applications and disciplines, including computer vision and image recognition (He et al., 2016;
Karpathy et al., 2014; Krizhevsky et al., 2012), speech recognition and machine translation (Hin-
ton et al., 2012; Sutskever et al., 2014), robotics (Lillicrap et al., 2015; Mnih et al., 2016), and

2689–3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 19

20 Fuks & Tchelepi

medicine (Gulshan et al., 2016; Liu et al., 2017). There is no doubt that the range of applications
will grow and the impact of ML methods will continue to spread.

Deep learning allows neural networks composed of multiple processing layers to learn rep-
resentations of raw input data with multiple levels of abstraction. These networks are known to
be particularly effective at supervised learning tasks, whereby the successful application of these
models usually requires the availability of large amounts of labeled data. However, in many engi-
neering applications, data acquisition is often prohibitively expensive, and the amount of labeled
data is usually quite sparse. Specifically, most computational geoscience problems related to
modeling subsurface flow dynamics suffer from sparse site-specific data. Consequently, in this
“sparse data” regime, it is crucial to employ domain knowledge to reduce the need for labeled
training data, or even aim to train ML models without any labeled data relying only on con-
straints (Stewart and Ermon, 2017). These constraints are used to encode the specific structure
and properties of the output that are known to hold because of domain knowledge, e.g., known
physics laws such as conservation of momentum, mass, and energy.

Physics informed machine learning approaches have been explored recently in a variety of
computational physics problems, whereby the focus is on enabling the neural network to learn
the solutions of deterministic partial differential equations (PDEs). Early works in this area date
back to the 1990s (Lagaris et al., 1998; Lee and Kang, 1990; Meade Jr. and Fernandez, 1994;
Psichogios and Ungar, 1992). However, in the context of modern neural network architectures,
the interest in this topic has been revived (Raissi et al., 2017, 2019; Zhu et al., 2019). These so-
called physics informed machine learning (PIML) approaches are designed to obtain data-driven
solutions of general nonlinear PDEs, and they may be a promising alternative to traditional nu-
merical methods for solving PDEs, such as finite-difference and finite-volume methods. The
core idea of PIML is that the developed neural network encodes the underlying physical law as
prior information, and then uses this information during the training process. The approach takes
advantage of the neural network capability to approximate any continuous function (Cybenko,
1989; Hornik et al., 1989). Raissi et al. (2017) demonstrated the PIML capabilities for a col-
lection of diverse problems in computational science (Burgers’ equation, Navier-Stokes, etc.).
They suggested that if the considered PDE is well-posed and its solution is unique, then the
PIML method is capable of achieving good predictive accuracy given a sufficiently expressive
neural network architecture and a sufficient number of collocation points. In the current work,
we show that the neural network approach struggles and even fails for modeling the nonlinear
hyperbolic PDE that governs two-phase transport in porous media. Our experience indicates that
this shortcoming of PIML for hyperbolic PDEs is not related to the specific architecture, or to
the choice of the hyperparameters (e.g., number of collocation points, etc.).

One important class of PDEs is that of conservation laws that describe the conservation of
mass, momentum, and energy. In particular, these conservation equations describe displacement
processes that are essential for modeling flow and transport in subsurface porous formations,
such as water-oil or gas-oil displacements (Aziz and Settari, 1979; Orr, 2007). Numerical reser-
voir simulation based on solving mass conservation equations with constitutive relations for
the nonlinear coefficients is used to make predictions. A major challenge in practice is that the
available information/measurements (i.e., labeled data) about the specific geological formation
of interest is often quite sparse. Thus, it is critical to take advantage of any prior information
in order to improve the predictive reliability of the computational models. The physics of two-
phase fluid transport, e.g., water-oil displacements, is described by a nonlinear hyperbolic PDE
[or a system of PDEs (Orr, 2007)]. These nonlinear transport problems are known to be quite
challenging for standard numerical methods (Aziz and Settari, 1979), and this is largely due

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 21

to the presence of steep saturation fronts and mixed waves (shocks and spreading waves) in
the solution. Specifically, we are interested in solving Riemann problems—initial value prob-
lems, when the initial data consist of two constant states separated by a jump discontinuity at
x = 0.

There are significant efforts aimed at figuring out the potential of machine learning in the
modeling of flow processes in large-scale subsurface formations. Thus, it is extremely impor-
tant to understand the limitations of PIML schemes for making computational predictions of
reservoir displacement processes. Here, we investigate the application of the physics informed
machine learning approach to the “pure” forward problem of nonlinear two-phase transport in
porous media. We evaluate the performance of the PIML framework for this problem with dif-
ferent flux (fractional flow) functions. The objective is to assess how well this PIML approach
performs for nonlinear flow problems with discontinuous solutions (i.e., shocks).

The paper proceeds as follows. In Section 2, we describe the two-phase transport model
and the governing hyperbolic PDE that we aim to solve with a machine learning approach. In
Section 3 we provide a brief overview of the physics informedmachine learning framework that
we use to solve the deterministic PDE. The results for the transport problem with different flux
functions are presented in Section 4. Then, to understand the observed behavior of the method we
provide a more detailed analysis of the trained neural networks in Section 5. Lastly, in Section 6,
we summarize our findings and provide a brief discussion of the results.

2. TWO-PHASE TRANSPORT MODEL

We consider the standard Buckley-Leverett model with two incompressible immiscible fluids,
e.g., oil and water. A nonwetting phase, e.g., oil (o), is displaced by a wetting phase, e.g., water
(w), in a porous medium with permeabilityk(x) and porosityφ(x). Gravity and capillary effects
are neglected. Under these assumptions, the pressurep and fluid saturationsSα (α = o, w) are
governed by a coupled system of mass balance equations complemented by Darcy’s equations
for each phase. After some manipulation [see, e.g., Aziz andSettari (1979)], the system can be
transformed into the incompressibility condition for the total flux,utot:

∇ · utot = qt, (1)

whereqt is a total source (sink) term, and the conservation equationfor one of the phases, e.g.,
water:

φ(x)
∂Sw

∂t
+∇ · (fw(Sw) · utot) = qw. (2)

Hereutot = uw +uo is the total flux anduα represents the Darcy’s flux for a phase (α = o,w);
the functionfw is called the fractional flow of water or simply, flux function, and is defined as
follows:

fw =
λw

λw + λo
, (3)

whereλα = (k krα)/µα stands for the phase mobility,µα is the viscosity of the phase,krα(Sα)
is the relative phase permeability, andqw is a source (sink) term for water. The source or sink
terms represent the effect of wells. Equation (2) is supplemented with uniform initial and bound-
ary conditions:

Sw(x, t) = swi, ∀x and t = 0,

Sw(x, t) = sb, x ∈ Γinj and t > 0,
(4)

Volume 1, Issue 1, 2020

22 Fuks & Tchelepi

whereswi is the initial water saturation in the reservoir, andsb is the saturation at the injection
well or boundary,Γinj .

In one-dimensional space, Eq. (2) becomes

φ(x)
∂Sw

∂t
+ utot

∂fw(Sw)

∂x
= 0, (5)

and the total velocityutot is constant. After introducing the dimensionless variablestD =
∫ t

0 [(utotdt
′)/φL] andxD = x/L, whereL is the length of the one-dimensional system, we

can rewrite Eq. (5) as follows:
∂Sw

∂tD
+

∂fw(Sw)

∂xD

= 0, (6)

while initial and boundary conditions can be written as:

Sw(xD, 0) = swi, ∀xD

Sw(xD, tD) = sb, xD = 0 and tD > 0.
(7)

Solving this initial value problem is equivalent to solving the following nonlinear hyperbolic
PDE:

∂u

∂t
+

∂f(u)

∂x
= 0, (8)

with the piecewise constant initial condition,

u(t = 0, x) = u0(x). (9)

Here,u(t, x) is the space-time dependent quantity of interest (conserved scalar) that needs to be
solved for, andf(u) is the flux function. The PDE (8) can be solved by the method of character-
istics, and it can be shown that the characteristics are straight lines [see e.g., (Lax, 1973)]. If the
initial data (9) are piecewise constant having a single discontinuity, i.e., a Riemann problem, the
PDE solution is a self-similar function. The hyperbolic PDE of the general form (8) is the main
subject of the current work, and in the following we solve the initial value problem, Eqs. (8) and
(9), by applying the physics informed machine learning (PIML) approach.

3. PHYSICS INFORMED MACHINE LEARNING

In this section we consider the following general partial differential equation:

ut +N (u) = 0, (10)

whereN (·) is a nonlinear differential operator.
Neural networks are often regarded as universal function approximators (Cybenko, 1989;

Hornik et al., 1989)—which means that a feed-forward network with a single hidden layer con-
taining a finite number of neurons can approximate any continuous function to any desired level
of precision. Following the approach of Raissi et al. (2019), the solutionu(t, x) to the PDE is
approximated by a deep neural network parameterized by a set of parametersθ. In other words,

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 23

the solution to the PDE is represented as a series of functioncompositions:

y1(t, x) = σ(W1X + b1),

y2(t, x) = σ(W2y1 + b2),

. . .

ynl+1(t, x) = Wnl+1ynl
+ bnl+1,

uθ(t, x) = ynl+1(t, x), (11)

where the input vectorX contains space and time coordinates; i.e.,X = (x, t), θ is the ensemble
of all the model parameters:

θ = {W1,W2, . . . ,Wnl+1, b1, b2, . . . , bnl+1}, (12)

σ is an activation function (tanh in our case) andnl is the number of hidden layers. Defining
zi(x) = σ(Wix+ bi) for i = 1, ..., nl andzi(x) = Wix + bi for i = nl + 1, we can write the
solution to the PDE as follows:

uθ(t, x) = znl+1(znl
(. . . z2(z1(X)))). (13)

The residual of the PDE is just the left-hand side of Eq. (10):

r(t, x) = ut +N (u). (14)

When the PDE solution is approximated by a neural networkuθ(t, x), the residual of the PDE
can be also represented as the neural network with the same parametersθ:

rθ(t, x) = (uθ)t +N (uθ). (15)

This networkrθ(t, x) can be easily derived by applying automatic differentiation to the network
uθ(t, x). Then, the shared parametersθ are learned by minimizing the following loss function:

L(θ) = Lu(θ) + Lr(θ),

Lu(θ) =
1
Nu

Nu
∑

i=1

|uθ(t
i
u, x

i
u)− ui

bc|
2,

Lr(θ) =
1
Nr

Nr
∑

i=1

|rθ(t
i
r, x

i
r)|

2,

(16)

where{(tiu, x
i
u), u

i
bc}

Nu

i=1 represent the training data on initial and boundary conditions, and
{tir, x

i
r}

Nr

i=1 denote the collocation points for the PDE residual,r(t, x), sampled randomly
throughout the domain of interest. Thus, the loss function consists of two terms: one is the
mean squared error coming from the initial and boundary conditions, and the other is the mean
squared error from the residual evaluated at collocation points inside the physical domain.

4. NUMERICAL RESULTS

In our examples, we consider the nonlinear hyperbolic transport equation of the form

ut + (fw)x = 0, (17)

Volume 1, Issue 1, 2020

24 Fuks & Tchelepi

wherefw = fw(u) is the fractional flow function, i.e., flux function, andx ∈ [0, 1], t ∈ [0, 1].
The unknown solutionu corresponds to water saturation,Sw, in Eq. (6). Different flux functions
produce different types of waves in the solution. In addition, we assume the following uniform
initial and boundary conditions:

u(x, t) = 0, ∀x and t = 0,

u(x, t) = 1, x = 0 and t > 0.
(18)

This setting corresponds to the injection of water at one end of the oil-filled 1D reservoir, e.g.,
rock core, and the following parameters:swi = 0, sb = 1. The conservation law (17) with initial
and boundary conditions (18) forms a Riemann problem that has a self-similar solution, i.e.,
u(x, t) = u(x/t).

In the numerical examples, we use the fully connected neural network architecture reported
in Raissi et al. (2019) that consists of eight hidden layers with 20 neurons per hidden layer.
The hyperbolic tangent activation function is used in all hidden layers. All weights are initial-
ized randomly according to the Xavier initialization scheme (Glorot and Bengio, 2010). The
loss function is optimized with a second-order quasi-Newton method, L-BFGS-B (Nocedal and
Wright, 2006). For the training data in all examples we useNu = 300 randomly distributed
points on initial and boundary conditions, andNr = 10,000 collocation points for the residual
term, sampled randomly over the interior of the domainx ∈ [0, 1], t ∈ [0, 1]. Next, we consider
different flux functionsfw(u) in Eq. (17).

4.1 Concave Flux Function

If the relative phase permeabilities,krα(Sα), are linear functions of saturation, and the ratio of
the phase viscosities is denoted asµo/µw = M , the corresponding flux function,fw, can be
written as

fw(u) =
u

u+
1− u

M

. (19)

For M > 1, this flux function is concave, as shown in Fig. 1(a) forM = 2. The solution of
the Eq. (17) for the given initial and boundary conditions (18) and the flux function (19) is a
rarefaction (spreading) wave:

u(x, t) =

0,
x

t
> M

√

M
t

x
− 1

M − 1
, M ≥

x

t
≥

1
M

.

1,
1
M

≥
x

t

We consider the caseM = 2. Due to the piecewise nature of the analytical solution, there are
certain locations (specifically, those along the linesx/t = M andx/t = 1/M), where the
solution is non-differentiable as derivatives of the solution are different on both sides.

However, this does not prevent the deep learning approach from learning the solution. Fig-
ure 2 presents a comparison of the exact analytical solution and the solution predicted by neural
network at time instancest = 0.25, 0.5, 0.75. In this case, the neural network produces accurate

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 25

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(a) Concave

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(b) Non-convex

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(c) Convex

FIG. 1: Different flux functions

estimates of the PDE solution with some smoothing of the non-differentiable edges of the solu-
tion. The final loss at the end of training isL(θ) = 1.2 × 10−3 and the resulting relativeL2

norm of the prediction error of the solution (compared to theanalytical solution) is 2.6 × 10−2.

4.2 Non-Convex Flux Function

In most practical settings, the interaction between two immiscible fluids flowing through the
porous medium leads to highly nonlinear relative permeabilities. A simple model that captures
this characteristic is the Brooks-Corey model (Brooks and Corey, 1964), which gives the power-
law relationship between the relative permeability of a fluid phase and its saturation. Specifically,
we use a quadratic relationship, which leads to the following flux, i.e., fractional flow, function:

fw(u) =
u2

u2 +
(1− u)2

M

, (20)

Volume 1, Issue 1, 2020

26 Fuks & Tchelepi

FIG. 2: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
concave flux function (19), corresponding to the three different timest = 0.25,0.5, 0.75

where againM is the ratio of phase viscosities. The PDE (17) with this non-convex flux function
constitutes a standard Buckley-Leverett problem in porous media flow. In our example we use
M = 1 and the corresponding flux function is depicted in Fig. 1(b). We proceed by considering
two cases with this flux function—with and without an additional diffusion term in the PDE.

4.2.1 Without Diffusion Term

In this case, the residual term (17), representing the hyperbolic PDE, is used directly in the loss
function. The analytical solution to this problem contains a shock and a rarefaction wave and is
constructed as follows:

u(x, t) =

0,
x

t
> f ′

w(u
∗)

u
(x

t

)

, f ′
w(u

∗) ≥
x

t
≥ f ′

w(u = 1) ,

1, f ′
w(u = 1) ≥

x

t

(21)

whereu∗ denotes the shock location, which is defined by the Rankine-Hugoniot condition
f ′
w(u

∗) = [fw(u
∗)− fw(u)|u=0]/(u

∗ − u|u=0), andu(x/t) is defined forx/t ≤ f ′
w(u

∗) as
u(x/t) = (f ′

w)
−1(x/t). Due to the self-similarity, the analytical solution (21) has just one gov-

erning parameter—the similarity variablex/t.
Figure 3 shows that the neural network fails in this case to provide an accurate approxima-

tion of the underlying analytical solution (21). In fact, the neural network completely misses
the correct location of the saturation front, which leads to high values of the loss [at the end
of training it isL(θ) = 0.036] and large prediction errors. In our numerical experiments, we
observed that changing the neural network architecture and/or increasing the number of colloca-
tion points had little impact on the results (details of these studies are provided in Appendix A).
Thus, we think this phenomenon is not related to the choice of the network architecture or its
hyperparameters.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 27

FIG. 3: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
non-convex flux function (20), corresponding to the three different timest = 0.25,0.5, 0.75

4.2.2 With Diffusion Term

The vanishing viscosity method for solving the initial value problems for hyperbolic PDEs (Cran-
dall and Lions, 1983; Lax, 2006) is based on the fact that solutions of the inviscid equations, e.g.,
Eq. (17), including solutions with shocks, are the limits of the solutions of the viscous equations
as the coefficient of viscosity tends to zero. Motivated by this approach, we add a second-order
term, i.e., a diffusion term, to the right-hand side of Eq. (17) and consider the following equation:

ut + f ′
w(u)ux = ǫuxx, (22)

whereǫ > 0 is a scalar diffusion coefficient that represents the inverse of the Péclet number,
Pe—the ratio of a characteristic time for dispersion to a characteristic time for convection. When
ǫ is small, i.e., the Péclet number is large, the effects of diffusion are negligible and convection
dominates. Lettingǫ → 0 in Eq. (22) defines a vanishing diffusion solution of Eq. (17), which
is the one with the correct physical behavior. Also, it should be noted that Eq. (22) is now a
parabolic PDE, so its solution is smooth, i.e., it does not contain shocks.

Figure 4 shows neural network solutions for two different values of diffusion coefficient
ǫ: 1 × 10−2 (Pe= 100) and 2.5 × 10−3 (Pe= 400). The loss values at the end of the training
areL(θ) = 3.2 × 10−6 and 2.4 × 10−5, respectively. Note that the loss function is different
in these two cases as the loss depends on the PDE residual, which is a function ofǫ according
to Eq. (22). From these results, we see that adding a diffusion term to the conservation equation
allows the neural network to perfectly capture the location of the saturation front even for quite
smallǫ. Indeed, the solution in Fig. 4(b) forǫ = 2.5 × 10−3 is almost indistinguishable from
the underlying analytical PDE solution—there is just a slight smoothing of the shock. In our
numerical experiments, we also observed that if we continue to decrease the value of diffusion
coefficientǫ, e.g.,ǫ = 1× 10−3, then the diffusion effects become too small, and the behavior
of the neural network is the same as in the hyperbolic setting (i.e., zero diffusion) described in
Section 4.2.1. It should be noted that the experiments in the current section—both for PDEs with
and without the diffusion term—were all performed multiple times with different random seeds
and random initializations; however, the results in terms of recovering the shock were equivalent.

Volume 1, Issue 1, 2020

28 Fuks & Tchelepi

(a)ǫ = 1× 10−2

(b) ǫ = 2.5× 10−3

FIG. 4: Predictions of the neural network for the PDE (22) for different values of diffusion coefficientǫ.
Exact solution corresponds to the PDE (17) without diffusion term.

Then, we conducted similar experiments for other values of phase viscosity ratioM , such as
M = 0.5, 5, 10, that are also common in the subsurface transport domain. Under these settings
the solutions differ in size and speed of the shock, i.e., for largerM the shock size decreases
but its speed increases. However, the solution structure stays exactly the same—the solution
still consists of a shock followed by a rarefaction wave. We considered also two cases for each
value of the phase viscosity ratioM—with and without the diffusion term. The results of these
tests and conclusions were the same as forM = 1 described above; thus we conclude that the
observed behavior of the PIML approach is not sensitive to the value of parameterM .

It is worth mentioning that the obtained results are consistent with the previously reported
results of the PIML approach in Raissi et al. (2017). The authors of Raissi et al. (2017) studied
Burgers’ equation with the diffusion term (so the shock was smoothed) and the diffusion coeffi-
cient (ǫ in our notation) was equal toǫ = 0.01/π ≈ 3.2 × 10−3. However, if one applies the
PIML approach for the same settings of Burgers’ equation as in Raissi et al. (2017) but decreases

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 29

the diffusion coefficient to 0.5 × 10−3 or less (or sets it to zero altogether), then the network
fails in a similar way as was described in Section 4.2.1.

4.3 Convex Flux Function

Now, we move to the convex flux function, shown in Fig. 1(c), which is simply a quadratic
functionfw(u) = u2. The solution is a self-sharpening wave, propagating as shock with a unit
speed.

The prediction of the neural network fort = 0.5 in the case of hyperbolic PDE (17) is shown
in the left plot of Fig. 5. As in the case of the non-convex flux function, the PIML approach fails
for this problem. And similar to the non-convex flux case, adding a small diffusion term, e.g.,
with ǫ = 2.5 × 10−3, to the PDE allows the neural network to reconstruct the solution and
determine the location of the (smoothed) shock correctly (Fig. 5, on the right).

5. ANALYSIS

It is quite surprising that the neural network with several thousands of parameters is not able to
yield a reasonable approximation to the analytical solution of the 1D hyperbolic PDE (17) with
a non-convex flux function (20)—the solution that can be represented using a relatively simple
piecewise continuous function of one parameter (21). This is surprising, especially because ac-
cording to the universal approximation theorem (Cybenko, 1989) there should exist a network
that can provide a close approximation of the continuous solution of (22) for any arbitrarily small
ǫ (because the solution is smooth in this case); however, this is not what is observed in practice.
Thus, this leads us to the conclusion that the problem is not with the solution itself, but rather
with howwe attempt to find this solution, i.e., with the optimization process, or the loss function.

For the examples described above, we provide the analysis of the obtained neural networks.
Our aim here is to get a better understanding of the observed behavior of the neural network
approach—why it can find a solution to the problem with the additional diffusion term, i.e., the
parabolic form of the PDE, but fails to do so in the case of the underlying hyperbolic PDE,
i.e., when its solution contains a discontinuity. Is this due to some fundamental reasons that
prevent the neural network from finding a reasonable approximate solution (non-uniqueness of

FIG. 5: Predictions of the neural network att = 0.5 for the case of convex flux function: on the left the
prediction for the PDE without diffusion term, on the right – with added diffusion term, as in Eq. (22), and
diffusion coefficientǫ = 2.5 × 10−3. Exact solutions in both cases are shown for the PDE (17) without
diffusion term.

Volume 1, Issue 1, 2020

30 Fuks & Tchelepi

the solution of the weak form), or is it because the employed optimization algorithm just cannot
reach the solution? The latter can be due to the complicated nature of the non-convex landscape
of the loss function, or other inherent limitations of the optimization algorithm.

First, we investigate the training process and study the behavior of the loss and its gradients
with respect to the network parameters. Then, through 2D visualizations of the loss surface, we
study how the diffusion term affects the loss landscape and the convexity of the loss near the
final optimization point, i.e., optimized set of network parameters.

5.1 Training Process

Figure 6 shows the evolution of the loss function during the training process for models with
different amounts of diffusion, i.e., different values of the diffusion coefficientǫ before the
second-order term in Eq. (22). Thex-axis in the figure denotes the steps of the L-BFGS-B
optimization method. Note that the loss function being minimized is different for each model,
as part of the loss, corresponding to the residual term, is directly proportional toǫ. In Fig. 6 we
observe a clear trend. For larger values ofǫ the convergence rate of the optimization improves
significantly, i.e., the loss is minimized in far fewer steps. On the other hand, for smaller values
(i.e.,ǫ = 0 or 1×10−3) the corresponding loss curve flattens out quite early during the training,
and the optimization method fails to minimize the loss (the final loss is only of order 10−2).

The training of the neural network can also be studied by observing the gradient of the loss
with respect to the different parameters of the network, i.e., weights and biases of different layers.
Figure 7 shows theL2 norm of the loss gradient with respect to the weights in the first layer
versus the number of optimization steps (some curves were smoothed for better visualization).
The curves for the models that achieve good approximation accuracy of the solution, i.e., the
models withǫ = 5 × 10−2, 5 × 10−3 and 2.5 × 10−3, show a steady decrease in the norm

FIG. 6: The loss function during training for models with different amount of added diffusion according to
Eq. (22). Thex-axis denotes the steps of the L-BFGS-B optimization method.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 31

FIG. 7: The evolution of theL2 norm of the loss gradient with respect to the weights of the first network
layer during training. Thex-axis denotes the steps of the L-BFGS-B optimization method.

of the gradient during training, indicating convergence of the optimization process; on the other
hand, for the models that have large prediction errors, i.e., forǫ = 0 andǫ = 1 × 10−3,
the gradients do not decrease with time, and sometimes even increase, indicating failure of the
optimization process. The loss gradients with respect to the parameters in other layers of the
network showed similar trends. Again, from the results shown in Fig. 7 it is obvious that the
magnitude ofǫ significantly affects the behavior of the loss gradients. This behavior forǫ ∼ 0
may be explained with the complicated objective function landscape, so that the quasi-Newton
method fails to minimize the loss. It may also be due to the poor conditioning of the Hessian
of the loss, so that the desired solution lies in a very local and narrow region. Nevertheless, it is
clear that the presence of the second-order termuxx, i.e., presence of diffusion in the PDE, and
the amount of diffusion strongly influence the training process of the physics informed network
and its ability to yield accurate approximations of the solution.

5.2 Loss Landscape

To visualize the surface of the loss, which is a function in the high-dimensional parameter
space, one must restrict the space to a low-dimensional one (1D or 2D), amenable to visu-
alization. Here, we choose to follow the approach of Li et al. (2018), whereby to get a 2D
projection of the loss surface we choose a center pointθ, corresponding to the final optimiza-
tion point (i.e., final parameters of the model reshaped into a single vector) and two direc-
tion vectors,δ and η, of the same dimension asθ. Then, we can plot the following func-
tion:

f(α,β) = L(θ+ αδ+ βη), (23)

Volume 1, Issue 1, 2020

32 Fuks & Tchelepi

whereα andβ are scalar parameters along vectorsδ andη, respectively. The direction vectors
are sampled randomly from Gaussian distribution—in the high-dimensional space these vectors
with a high probability will be almost orthogonal to each other. Then, Li et al. (2018) suggest
“filter-wise” normalizing the random directions to capture the natural distance scale of the loss
surface. This step ensures that elements in random vectors,δ andη, are of the same scale as
the corresponding parameters of the network, i.e., weights and biases of different network lay-
ers.

For visualizations we vary both scalar parameters,α andβ, in the range(−0.5, 0.5). Fig-
ure 8 shows the loss surface plots for different networks near their final optimization point, i.e.,
set of optimized parameters. This point corresponds to(0, 0) in the surface plots, and the two
axes represent the two random directions, respectively. The results are shown as contour plots
to make it easier to see the non-convex structures of the loss landscape. The networks differ in
the amount of the added diffusion, i.e., value of diffusion coefficientǫ. For large diffusion, for
example,ǫ = 5 × 10−2, in Fig. 8(a), we observe quite a large convex region, whereas for a
small amount of diffusion, e.g.,ǫ = 2.5 × 10−3, this region shrinks significantly, as shown in

(a)ǫ = 5× 10−2 (b) ǫ = 2.5× 10−3

(c) ǫ = 0

FIG. 8: 2D visualizations of the loss surface near the final optimization point for neural networks trained
with different values of diffusion coefficientǫ in Eq. (22). Note the change of scale forǫ = 0.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 33

Fig. 8(b). Note the change of scale in Fig. 8(c), which depicts the loss surface for the hyperbolic
PDE, i.e.,ǫ = 0,—for proper visualization the scale of the loss had to be increased by 10 times
compared to the cases with diffusion. No convex region is observed in this instance. Moreover,
the loss landscape is not as smooth as with the diffusion present—indeed, it has a lot of chaotic
features, as can be seen in Fig. 8(c). For visualization of the same loss surface on a larger slice of
the parameter space, refer to Fig. 9. From these observations, we can conclude that the presence
of the discontinuity, i.e., the shock, in the PDE solution strongly affects the properties of the
resulting landscape of the corresponding loss function – specifically, its smoothness and convex-
ity. It is not surprising that the optimization procedure struggles with this loss landscape and is
unable to reach the proper solution, i.e., the one that givesa close continuous approximation of
the discontinuous PDE solution (21). For comparison, we also show in Fig. 10 the loss surface
of the network approximating a smooth PDE solution in case ofconcave flux function (19). The
wide convex region of the loss surface is evident here.

6. DISCUSSION AND CONCLUSION

We investigated the application of a physics informed machine learning (PIML) approach to the
solution of one-dimensional hyperbolic PDEs that describethe nonlinear two-phase transport
in porous media. The PIML approach encodes the underlying PDE into the loss function and
learns the solution to the PDE without any labeled data—onlyusing the knowledge of the ini-
tial/boundary conditions and the PDE. Our experiments withdifferent flux functions demonstrate
that the neural network approach provides accurate estimates of the solution of the hyperbolic
PDE when the solution does not contain discontinuities. However, the PIML approach fails to
provide reasonable approximate solution of the PDE when shocks are present. We found that
it is necessary to add a diffusion term to the underlying PDE,so that the network can recover
the proper location and size of the shock, which is smoothed by diffusion. Thus, the network
actually solves the parabolic form of the conservation equation, which leads to the correct so-
lution with smoothing around the shock. It is interesting tonote here the resemblance of this
effect with finite-volume methods, whereby the conservative finite-volume discretization adds a

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

First random direction
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Se
co
nd

 r
an

do
m
 d
ir
ec
tio

n

0

20

40

60

80

100

FIG. 9: 2D visualization of the loss surface of the neural network for the hyperbolic PDE (17) with non-
convex flux function (20)

Volume 1, Issue 1, 2020

34 Fuks & Tchelepi

−0.4 −0.2 0.0 0.2 0.4

First random direction

−0.4

−0.2

0.0

0.2

0.4

Se
co
nd

 r
an

do
m
 d
ir
ec
tio

n

0.1

1.1

2.1

3.1

4.1

5.1

6.1

7.1

8.1

9.1

FIG. 10: 2D visualization of the loss surface of the neural network for the hyperbolic PDE (17) with
concave flux function (19) (the PDE solution is smooth in this case)

numerical diffusion term, and as a result, the numerical solution corresponds to a parabolic equa-
tion with a finite amount of diffusion. This diffusion term can be controlled through refinement
in space-time and by the use of higher-order discretization schemes.

Then, we analyzed the network training process for cases with and without diffusion in the
PDE. Our study shows that the amount of added diffusion strongly affects the training of the
network (e.g., the convergence rate, the behavior of the loss gradients). Moreover, we provided
2D visualizations of the loss landscape of the neural networks near their final optimization point,
which indicate that the diffusion term in the PDE smooths the loss surface and makes it more
convex, while the loss surface of the hyperbolic PDE with discontinuous solution demonstrates
significant chaotic and non-convex features. However, the reasons for such behavior of the loss
function are not perfectly understood yet. It would be certainly interesting to derive some ana-
lytical explanation of the observed phenomena as well. Nevertheless, through the experiments
and analysis conducted in the current work we show that the physics informed machine learning
framework is not suited for the hyperbolic PDEs with discontinuous solutions considered here.

ACKNOWLEDGMENTS

We thank Total for their financial support of our research on “Uncertainty Quantification.” The
authors are also grateful to the Stanford University Petroleum Research Institute for Reservoir
Simulation (SUPRI-B) for financial support of this work.

REFERENCES

Aziz, K. and Settari, A.,Petroleum Reservoir Simulation, London: Elsevier/8, Applied Science Publishers,
1979.

Brooks, R. and Corey, T., Hydraulic Properties of Porous Media,Hydrology Papers, Colorado State Uni-
versity, vol. 24, 1964.

Crandall, M.G. and Lions, P.L., Viscosity Solutions of Hamilton-Jacobi Equations,Trans. Am. Math. Soc.,
vol. 277, no. 1, pp. 1–42, 1983.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 35

Cybenko, G., Approximation by Superpositions of a Sigmoidal Function,Math. Control, Signals Syst.,
vol. 2, no. 4, pp. 303–314, 1989.

Glorot, X. and Bengio, Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks,
in Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, pp. 249–256, 2010.

Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner,
K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., and Webster, D.R., Devel-
opment and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs,J. Am. Med. Assoc., vol. 316, no. 22, pp. 2402–2410, 2016.

He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, inProc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T.N., and Kingsbury, B., Deep Neural Networks for Acoustic Modeling in Speech Recognition,
IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks are Universal Approxima-
tors,Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L., Large-Scale Video Clas-
sification with Convolutional Neural Networks,Proc. of the 2014 IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 1725–1732, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet Classification with Deep Convolutional Neural
Networks, in Adv. Neural Inf. Process. Syst., vol. 25, no. 2, pp. 1097–1105, 2012.

Lagaris, I.E., Likas, A., and Fotiadis, D.I., Artificial Neural Networks for Solving Ordinary and Partial
Differential Equations, IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,
Philadelphia: Society for Industrial and Applied Mathematics, vol. 11, 1973.

Lax, P.D., Hyperbolic Partial Differential Equations, Providence, RI: American Mathematical Soc., vol. 14,
2006.

LeCun, Y. and Bengio, Y., Convolutional Networks for Images, Speech, and Time Series, in The Handbook
of Brain Theory and Neural Networks, M.A. Arbib, Ed., Cambridge MA: The MIT Press, vol. 3361, no.

10, 1995.

LeCun, Y., Bengio, Y., and Hinton, G., Deep Learning, Nature, vol. 521, no. 7553, pp. 436–444, 2015.

Lee, H. and Kang, I.S., Neural Algorithm for Solving Differential Equations, J. Comput. Phys., vol. 91,
no. 1, pp. 110–131, 1990.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T., Visualizing the Loss Landscape of Neural Nets,
Adv. Neural Inf. Process. Syst., pp. 6389–6399, 2018.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D., Continuous
Control with Deep Reinforcement Learning,, 2015. arXiv: 1509.02971

Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev,
A., Nelson, P.Q., and Corrado, G.S., Detecting Cancer Metastases on Gigapixel Pathology Images,
2017. arXiv: 1703.02442

Meade Jr., A.J. and Fernandez, A.A., The Numerical Solution of Linear Ordinary Differential Equations
by Feedforward Neural Networks,Math. Comput. Model., vol. 19, no. 12, pp. 1–25, 1994.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K.,
Asynchronous Methods for Deep Reinforcement Learning, inProc. of the 33rd Int. Conf. on Machine
Learning, pp. 1928–1937, 2016.

Nocedal, J. and Wright, S.,Numerical Optimization, Berlin: Springer Science & Business Media, 2006.

Orr, F.,Theory of Gas Injection Processes, Holte, Denmark: Tie-Line Publications, 2007.

Volume 1, Issue 1, 2020

36 Fuks & Tchelepi

Psichogios, D.C. and Ungar, L.H., A Hybrid Neural Network-First Principles Approach to Process Model-
ing, AIChE J., vol. 38, no. 10, pp. 1499–1511, 1992.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics Informed Deep Learning (Part I): Data-Driven
Solutions of Nonlinear Partial Differential Equations, 2017. arXiv: 1711.10566

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics-Informed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions,J. Comput. Phys., vol. 378, pp. 686–707, 2019.

Stewart, R. and Ermon, S., Label-Free Supervision of Neural Networks with Physics and Domain Knowl-
edge, inProc. of the 31st AAAI Conference on Artificial Intelligence, pp. 2576–2582, 2017.

Sutskever, I., Vinyals, O., and Le, Q.V., Sequence to Sequence Learning with Neural Networks,Adv. Neural
Inf. Process. Syst., pp. 3104–3112, 2014.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., and Perdikaris, P., Physics-Constrained Deep Learning for High-
Dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data,J. Comput.
Phys., vol. 394, pp. 56–81, 2019.

APPENDIX A. SENSITIVITY STUDY FOR THE BUCKLEY-LEVERETT PROBLEM

For the case described in Section 4.2.1, we perform a sensitivity study. Our aim here is to under-
stand whether the result obtained in Section 4.2.1 for the Buckley-Leverett problem (nonlinear
transport with a non-convex flux function) is strongly dependent on the particular choice of the
network architecture and the different hyperparameters of the method, such as the number of
training points in initial and boundary dataNu and the number of collocation pointsNr in the
interior of the domain.

First, we fix the network architecture to eight hidden layers with 20 neurons per hidden
layer, and we vary the number of initial and boundary training dataNu in the range(100, 600)
and the number of collocation pointsNr in the range (1000, 20,000). The final values of the loss
function at the end of the training for these experiments are shown in Table A1. In all these cases,
the network failed to yield a reasonable approximation of the shock; as the result, we observe a
relatively large value of the loss function (i.e.,∼ 10−2). From Table A1, it is also clear that the
network performance is not a strong function of the number of initial and boundary training data
and the number of collocation points.

In the next experimental set, we kept the total number of training and collocation points
fixed to Nu = 300 andNr = 10,000, and varied the number of hidden layers in the range
(2, 12) and the number of neurons per hidden layer in the range(10, 40). With these ranges,
the total number of network parameters varied from 151 to over 18,000. Table A2 reports the
value of the loss function at the end of the training for these different architectures. Again,

TABLE A1: Final loss at the end of training for different number of initial and boundary training
data pointsNu and different number of collocation pointsNr. The network architecture is fixed
to 8 hidden layers with 20 neurons per hidden layer
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Nu

Nr 1000 5000 10,000 20,000

100 1.6 × 10−2 3.4 × 10−2 3.0 × 10−2 2.6 × 10−2

300 2.2 × 10−2 2.6 × 10−2 3.4 × 10−2 3.2 × 10−2

600 1.3 × 10−2 2.0 × 10−2 3.1 × 10−2 3.0 × 10−2

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 37

TABLE A2: Final loss at the end of training for different number of hidden layers
and different number of neurons per hidden layer. The total number of training and
collocation points is fixed toNu = 300 andNr = 10,000
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵❵

Layers
Neurons

10 20 40

2 3.4 × 10−2 3.2 × 10−2 3.2 × 10−2

4 1.6 × 10−2 3.2 × 10−2 3.1 × 10−2

8 3.3 × 10−2 3.4 × 10−2 3.3 × 10−2

12 3.5 × 10−2 2.9 × 10−2 1.9 × 10−2

the observed trend is quite consistent—the final result is not weakly sensitive to the particular
network architecture. Moreover, the PDE solutionsu(t, x) predicted by the neural networks
in all these cases were quite similar to the ones reported in Section 4.2.1, where the network
completely fails to approximate the shock.

In addition, we experimented with application of standard regularization of the network
weights—the technique typically used in machine learning to decrease overfitting. Specifically,
we added to the loss functionL(θ) a regularization term of the formlreg = βW TW (where
W denotes the weights of the network) and considered a range ofregularization constants
β = [1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3]. However, in these experiments
we did not see any improvement in the PIML results for hyperbolic PDE.

Next, we also tested the PIML approach with different types of networks—a residual net-
work architecture (He et al., 2016) and a convolutional neural network (CNN) (LeCun et al.,
1995). For the residual network we added skip connections after each layer in the original fully
connected architecture. With CNN architecture we used eight convolutional layers with 20 filters
each, that perform 1D convolutions and have a kernel size of 1× 1 (in this case, the number of
parameters is the same as in the standard fully connected architecture reported in the paper). In
these experiments we observed similar behavior—that the PIML approach fails for hyperbolic
PDE but performs well for PDE with added diffusion term.

Volume 1, Issue 1, 2020

