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We present a data-driven numerical approach for modeling unknown dynamical systems with miss-
ing/hidden parameters. The method is based on training a deep neural network (DNN) model for
the unknown system using its trajectory data. A key feature is that the unknown dynamical system
contains system parameters that are completely hidden, in the sense that no information about the
parameters is available through either the measurement trajectory data or our prior knowledge of
the system. We demonstrate that by training a DNN using the trajectory data with sufficient time
history, the resulting DNN model can accurately model the unknown dynamical system. For new
initial conditions associated with new, and unknown, system parameters, the DNN model can pro-
duce accurate system predictions over longer time.
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1. INTRODUCTION

There has been a growing interest in learning unknown dycelraistems using observational
data. A common approach is to construct a mapping from the géaiables to their time deriva-
tives. Various numerical approximation techniques can ¢®duto construct such a mapping.
These include sparse regression, polynomial approximstinodel selection, and Gaussian pro-
cess regression (Brunton et al., 2016; Mangan et al., 20digsRet al., 2017a; Rudy et al., 2017;
Schaeffer et al., 2018; Wu et al., 2019; Wu and Xiu, 2019)ame a few. More recently, deep
neural networks (DNNs) have been adopted to construct tippimg. Studies have empirically
demonstrated the ability of DNN to model ordinary diffeiahtquations (ODESs) (Qin et al.,
2019; Raissi et al., 2018; Rudy et al., 2019) and partiakdiffitial equations (PDEs) (Long
et al., 2018a,b; Raissi, 2018; Raissi et al., 2017b,c; Sah,e2019). A notable recent develop-
ment is to model the mapping between two system states segdnp a short time (Qin et al.,
2019). This approach essentially models the underlying fitap of the unknown system, and is
notably different from the earlier approach of modeling thep between the state variables and
their time derivatives. The flow map based approach eliremtte need for temporal derivative
data, which are often difficult to acquire in practice andjeatxto larger errors. Once an accurate
DNN model for the flow map is constructed, it can be used as aluton operator to conduct
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system predictions. In particular, the residual networéggRet), developed in the image analysis
community (He et al., 2016), was found to be suitable for vedng the flow map (Chen and
Xiu, 2021; Qin et al., 2019). Since its introduction (Qin &t 2019), the flow map based DNN
modeling approach has been extended to modeling of nomaunous dynamical systems (Qin
et al., 2021a), parametric dynamical systems (Qin et a218Y) and partially observed dynam-
ical systems (Fu et al., 2020), as well as PDEs (Wu and XiuQR02

The focus of this paper is on a different type of data-driverdeling problem. We assume
that the target unknown dynamical system is parameterigeddet of parameters that are com-
pletely hidden, in the sense that no prior knowledge abaaifdhm, or even the existence, of
the parameters is available. The only available infornmatibthe dynamical system is in the
form of the trajectory data of its state variables. The tjgy data are also parameterized, in
an unknown manner, by the hidden parameters. Our goal isnstrewt a predictive model of
the underlying dynamical system by using only the trajgcttata. Once the predictive model is
constructed, it shall be able to produce accurate predEtid the system states over time, for
any given initial conditions that are parameterized by tldelén parameters in an unknown man-
ner. The distinct feature of this work is that no knowledgé¢hef system parameters is assumed
to be available, not in the (unknown) governing equationis @he trajectory data (for training
or prediction). This is often the case for many complex systevhose dynamics are controlled
by a large, and sometimes unknown, number of parameterahabt measurable.

The method proposed in this paper is motivated by the worluddtfal. (2020), who studied
the modeling of partially observed dynamical systems wirajectory data of only a subset of
the state variables are available. While the celebrated-Mamanzig (MZ) formulation (Mori,
1965; Zwanzig, 1973) defines a closed-form dynamical sy$tertine observed state variables,
the MZ system is intractable for practical computationstasvolves a memory integral of an
unknown kernel function. Upon assuming a finite effectivenmey length, a DNN structure
with explicit incorporation of “past memory” was propos@&ddu et al. (2020) and shown to be
highly effective for learning and modeling partially obged systems. Compared to other DNN
strutures with memory gates, e.g., LSTM, the DNN structuoenfFu et al. (2020) is notably
simpler and serves as a direct approximation of the MZ foatiath.

In this paper, we adopt the DNN structure developed in Fu.¢28R0) and demonstrate that
it can be used to model unknown dynamical systems with higdeameters. The theoretical
motivation is that the hidden parameters can be viewed afseobserved state variables with
trivial dynamics. Consequently the DNN structure from Fakt(2020) becomes applicable.
Moreover, for long-term prediction accuracy and stahilitye introduce a recurrent structure
during network training. Once the DNN model is construcigds able to produce accurate
system predictions over longer time, for any given initi@hditions containing unknown hidden
parameters.

2. SETUP AND PRELIMINARIES

Let us consider a dynamical system,

%(t; o) = f(x, x), x(0; ) = Xo, Q)

wherex € R™ are state variables and € R¢ are system parameters. We assume that the form
of the governing equations, which manifests itself fiaR™ x R? — R™, is unknown. More
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importantly, we assume that the information about the sygiarameters is not available. In
fact, even the dimensionalityof « can be unknown.

2.1 Learning Objective

We assume trajectory data are available for the state VasigbLet N1 be the total number of
observed trajectories. For eatth trajectory, we have

X<i>:{§<(t§j>)}, k=1... KO i=1.. Np, )

Where{t,(j)} are discrete time instances at which the data are avaitafdy () is the total num-
ber of data entries in thih trajectory. Note that eacilth trajectory is associated with an initial
condition?c((f) and system parametess’), both of which are unknown.

Our goal is to construct an accurate numerical modélfor the system (1), by using the
data set (2). More specifically, let

O=tg<---<ty=T,

be a sequence of time instances with a finite horizor 0. This will be our prediction time
stencil. We seek a predictive mod&ll such that, for any given initial conditiorg, which is
associated with an unknown system paramedethe model prediction is an accurate approxi-
mation of the true system, in the sense that

M(tk;xo’ a)%i(tk;x()? a)’ k:]'?"'7N7 (3)

with satisfactory accuracy.

2.2 Related Study

Our topic is related to, and extends to, two recent studiemadeling dynamical systems. The
first related study is on recovering unknown determinisgioainical systems. When data of
the state variables are available, it was shown in Qin et al. (2019) that the resichetwork
(ResNet) can be used to construct a predictive model. In factautonomous systems, the
ResNet based DNN model is an exact integrator of the unaerlgystem. It is a one-step pre-
dictive model and consequently requires only trajectotg dtwo consecutive data entries. For
parameterized systems, when the parameteage known from the trajectory data, the ResNet
model can be modified to incorporate more input neurons t@semt the system parameters
See Qin et al. (2021b) for details.

Another related study is on modeling unknown dynamicalesyst with partially observed
state variables. Let” = (z",w ) be the full set of state variables, where R" is the subset
of the state variables with available data, amd= R¢ is the subset of missing variables. Based
on the celebrated MZ formulation (Mori, 1965; Zwanzig, 197Be evolution ofz follows a
generalized Langevin equation,

4,
dt
which involves a Markovian teriR, a memory integral with kerndk and a random terrir

involving the unknown initial condition. Upon making an asgption on finite effective memory,
a discrete approximate MZ equation was proposed in Fu e2@2Q),

(t) = R(z(t)) +/0 K(z(t — s), s)ds + F(t,xo), 4)
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d . . . .
Ez(t) s = R(Z(t)) ‘t:tn + M(annMa sy Zn-1, Zn)a (5)
wherez,, = z(t,,) is the solution at time,, = nA over a constant time step; ny, is the num-
ber of memory terms. A DNN structure to explicitly account foe memory terms was then
proposed in Fu et al. (2020) and shown to be highly effectidaccurate.

3. METHOD DESCRIPTION

In this section, we describe the details of our proposed tssping approach for systems with
hidden parameters. The distinct feature of our work is tbabnly are the system equations un-
known, the associated system parameters remain completiehown throughout the modeling

and prediction process.

3.1 Motivation

For the unkonwn system with missing/hidden parametersofig,can view it in an alternative
form,

Z—j =f(x,a), x(0)=Xo,
dox (6)
T 0, «(0)=a.

If one treatso also as state variables with trivial dynamics and vi&vs= (X7, )T as the
complete set of state variables, the data set (3 then represents the data of a subset of the full
variable sefX. From this perspective, the memory based DNN structurdgaed in Fu et al.
(2020) for partially observed systems, becomes applic&t@ecafter we will employ the DNN
structure of Fu et al. (2020) and modify it to suit our modgliveeds.

3.2 Network Structure

Our basic DNN structure consists of a forward block and anrect block. For notational con-
venience, hereafter we shall assume a constance time step,

A=t 9 vk=1,... K@ -1 i=1... Ny, )

for all the trajectory data, as well as for the predictiondistencil. [Variable time steps can
be readily incorporated into the DNN model as an additionalt. See Qin et al. (2021b) for
details.]

3.2.1 Forward Block

The forward block of our DNN model is similar to the DNN with mery model developed in
Fu et al. (2020). The structure of the forward block is ilfagtd in Fig. 1, where we use the
following notation

X, = (xiT,...,ij)T, j>i, (8)
to denote the concatenated vector of the state variablessecutive indices from; to x;. The
input layer of the DNNX,,_.,,, ., incorporatesr(,, + 1) state vectors, each of which has
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Xn,— narin

details

Forward |::> N
Block

@

FIG. 1: lllustration of forward block

sizen. The output layer incorporates a single state vegtof lengthn. A standard fully con-
nected feedforward network (FFN) serves as the mapping fharinput layer to the output
layer. We usé&N to denote the mapping operator defined by the FFN. An opeFatantroduced
to the input layer and then applied to the output of the FFNs #&hto reintroducex,, before the
DNN output layer to achieve the ResNet-like operation.

More specifically, the DNN inpuK™™ = X,, ..., € R”, where the dimensioh, i.e., the
number of neurons in the input layer, is

D =nx (ny +1). (9)
The operatol is defined as &1 x D) matrix,
I=11,,0,...,0],
where the sizén x n) identity matrixI,, is concatenated by,, zero matrices of siz&l x d).
The fully connected FFN connecting the input and outputiateen defines a mapping operator
N(;0):RP - R", (10)
where® is the hyperparameter set associated with the FFN. Uporyiagpthe operatof to

the input and reintroducing,, at the output of the FFN operation, our DNN model defines the
following operation,

xOUt — [T+ N} (XM, (11)
which in turn can be written as
Xn+1 = Xp + N(Xn7 Xn—1y-+sXn—nu 6); n Z N (12)

We remark thatiy; > 0 is the number of memory steps included in our DNN model. Let
Ty = nar X A, This shall be the length of the effective memory, a conagpdduced in Fu et al.
(2020). The choice df}, is problem dependent and requires certain prior knowledgetience
about the underlying system. Sometimes trial and errorsis aécessary. Such practice is not
uncommon in many aspects of numerical analysis, for examptices of domain size and grid
size. Note thak,; = O represents the memoryless case, which reduces the DNNtdaok
standard ResNet structure used for modeling the complstersyQin et al. (2019).
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3.2.2 Recurrent Block

The forward DNN block discussed in the previous sectionsgesgally the same DNN structure
developed in Fu et al. (2020), for modeling systems with mgssariables. In principle, it is
also applicable for modeling systems with hidden paramegesrexplained in Section 3.1. How-
ever, during our initial numerical experimentations, weeheepeatedly discovered that it lacks
sufficient long-term numerical stability. To mitigate themerical instability, we thus introduce
a recurrent structure, in conjunction with the forward llda our final DNN model.

The structure of the recurrent block is illustrated in Figwhereng > 1 is the number
of recurrent steps. The trivial case of; = 1 reduces the DNN model to the forward block
structure in the previous section. The recurrent blocksaarecursively apply the forward DNN
block overn  time steps and compute the loss function using the outputeeoef; steps.

Using the notation (8), our final DNN model with, recurrent steps can then be defined as,
for any timet,, with n > n,,,

Xin = Xn—nM:na
Xpy1 = F-F N} (Xk—nar:k)s k=mn,...,n+ng, (13)
Xout = Xn+1:n+nR-

Note that theny forward blocks share the same parameteiGsdn other words, it is the same
forward block that is applied recurrentlyr times. The input of the entire DNN network is

the same as that of the nonrecurrent forward bla€K, ,,,,.n = (X, _,,,5- - - ,XI)T, ny + 1
steps of solution vectors. The output of the DNN is a sequeheg; steps of the outputs of the
forward block.

We remark that, although the recurrent forward block is moeghematical necessity, it is an
important component from a practical point of view. Our esige numerical experimentations,

not only in this work but also in related work such as Fu et 2020), have indicated that

Xn+np—ny—1:ﬂ+np—1

Forward
Block

Loss

4
!
¢ Loss
i
\

4
|
i Loss
1
v

Xn+1 Xn+2 Xn+ng
FIG. 2: lllustration of recurrent-forward-block structure with; recurrent steps
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the use of recurrent forward block can significantly enhamomerical stability for long-term
system predictions. Unfortunately, due to the lack of aldé mathematical analysis of the basic
properties of DNN, we are unable to provide rigorous sthbénalysis of the proposed DNN
model at this stage.

It is also worth noting that one may construct a many-to-mBiNN mapping from the
nas + 1 memory terms in the “past” to the entirg; terms in the “future.” Such a construc-
tion does not perform as well as the proposed one-step mtforward structure. In addition,
the many-to-many mapping is less flexible, as it does notilsepdovide a one-step forward
prediction.

3.3 Network Training and Predictive Modeling
The DNN model (13) effectively defines a mapping

Xout — A/(XN: @), (14)

whereX™" consists ofny; + 1 steps of the state variablgs and X°“ consists ofn steps of
the state variables. Therefore, to train the DNN model, vgeiire state variable trajectories of
length at leasti;,; = npr + ng + 1.

Let us assume that eadth trajectory in our data set (2) has its number of entriesfyaig
K@ > n,,, entries. (In other words, the trajectories with a smallenbar of entries are already
eliminated from the data set.) We then randomly select aepiée;,;, humber of consecutive
entries from the trajectory and regroup them into two sedmeéhe firstn,; + 1 entries vs. the
lastnp entries:

{ X0 y® } (15)

where
X — {x(t%))—r, ... ,x(téilnhl)—r ]T7

. T 7T
i) _ (1) (1)
Y( ) = |:x(tk+nM+l) ’ e (tk+nA4+nR) :| '

This random selection procedure is repeated for allXhetrajectories in the data set (2).
Note that for eachi = 1, ..., Ny trajectory, it is possible to select more than one such gngup
wheneverk ) > n,.,. Upon conducting the random sequence selection for allr#jectories
in (2), we obtain a collection of the grouping (15). After réering all the selected groupings
with a single index, we obtain the training data set for ouNDiNodel,

(16)

X ={X;,Y;}, j=1...,J, a7)

whereJ is the total number of data groupings. (Note that at thisesthg information of théth
trajectory, from which the groupingX;, Y} is originated, is not important.)
Our DNN model training is then conducted by minimizing thBdwing mean squared loss:

=

J
2
6" = argmin j; NEXDe) - Y (18)
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Upon finding the optimal network parame#®i, we obtain our trained network model in the
form of (13),

xout — [T+ N (- @*)} (X, (19)

where the optimized paramet® will be omitted hereafter, unless confusion arises oth&swi

The trained DNN model defines a predictive model for the umkndynamical system (1)
with hidden parameters. It requireg; + 1 initial conditions. Once given a sequencen@f + 1
state variableg, which are associated with unknown parametershe DNN model is able to
conduct one-step prediction iteratively for the systentesteorresponding to the same (and yet
still unknown) parametera. More specifically, the predictive scheme takes the folfmfiorm:
For any unknown hidden parametey

{Xk—x(tk;o‘)a k:O,...,TLM, (20)

*
Xn+l:xn+N(Xn;xn—la---7xn—nM;@ )7 n > mny.

4. NUMERICAL EXAMPLES

In this section, we present four numerical examples to emaitiie performance of the proposed
method. The examples include (1) a nonlinear pendulum systith two hidden parameters;
(2) a larger linear system with 100 hidden parameters; (3)rdimear chemical reactor system
with one hidden parameter that induces bifurcation in ttetesy behavior; and (4) a nonlinear
system for modeling cell signaling cascade with 12 hiddeampaters. In all the examples, the
underlying “true” models are known and used only to gendtsdraining data sets. Note that
in the training data sets, only the solution trajectoriesracorded; the corresponding parameter
values are not recorded. By doing so, the parameters intb@todels remain completely hidden
from the DNNs. To validate the trained DNN predictive modale use the corresponding true
models to generate a set of initial conditions that are nohéntraining data sets and with the
associated parameter values hidden. The DNN predictiveelaagde then used to produce system
predictions over a longer time horizon and compared ag#iesteference solutions generated
by the true models.

In all the examples here, the time step is fixed\at= 0.02. The number of memory steps
nys and recurrent stepsg are problem dependent and determined numerically by ghgdua
increasing the values till converged numerical resultsoéitained. Unless otherwise noted, the
DNNs used in the examples consist of three hidden layer$, 80t neurons each, and have
rectified linear unit (ReLU) activation function.

4.1 Example 1: Nonlinear Pendulum System

We first consider a small nonlinear system, the damped pendsystem,

{gbl - 21)

x'g = —XIr2 — B sinxl,
where the system parameters= («, 3) " are treated as hidden and confined to a redign=

[—0.05,0.15) x [8, 10]. The domain of interest for the state variables is sédas= [—0.5,0.5] x
[-1.6,1.6].
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The memory step is tested fag, = 10, 20, 40, 60, 80, 100, and 120, and the recurrent step
is tested fomgr = 1, 10, 20, and 40. The model prediction errors at differenniory steps and
the recurrent steps are shown in Fig. 3. The prediction €am@ computed using;-norm of the
DNN model predictions against the reference solutionsva tevelt = 100, averaged over 100
simulations with random initial conditions and system paegers. We observe that the accuracy
improvement over increasing,, starts to saturate with,, > 100. We also notice that a larger
ng produces better results consistently.

The DNN model predictive results withy; = 100 andnr = 40 are shown in Fig. 4, with
two sets of arbitrarily chosen initial conditions and (redlsystem parameters. This corresponds
to memory lengtm; x A = 0.4, which is in fact rather short. We observe very good agesd
between the DNN model predictions and the reference solsifir the long-term integrations up

o —— recurrent step = 1 AN GO bt e SRR 0
ok A RN S e i p iy

Y ~=~ recurrent step = 10 e AN AN

\

o —-~ recurrent step = 20 -05

-+ recurrent step = 40

A 20

MAMAAAA Y e ~aves, bt

& "“"‘Wm.mw.“.,,'l'.; 60

260

-0.4

log(error)
log(error)
b
5

-0.8

—-= memory step = 20
—— memory step = 40
~-- memory step = 60
—-= memory step = 80
memory step = 100

20 40 60 80 100 120 0 20 40 60 80 100
memory step time

(@) (b)

FIG. 3: Example 1. Model prediction errors at different memory stapd recurrent steps. (a) Errors vs.
nas, (b) errors over time fonr = 40.

— True value — True value
- NN prediction NN prediction

— True value — True value
+ NN prediction NN prediction

(© (d)

FIG. 4. Example 1. Model predictions up to= 100 withn;; = 100 andnr = 40 using two sets of
arbitrary initial conditions and system parameters. @)z(; (b), (d) z2.
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tot = 100. The corresponding numerical errors are plotted in3siglong with the comparison
of the phase portraits.

4.2 Example 2: Larger Linear System

We now consider a larger linear system involving 20 stateabies,
x = Ax, x e R?, A ¢ R20x20

where among the 400 entries of the coefficient mafjxve treat 100 of them as hidden param-
eters. More specifically, let us rewrite the system in terfng e= (p; q), wherep € R1° and
q € R1%satisfy

D=2 + I+ X ,
{P 11P ( 12)(1 22)

q = —(I + Egl)p — 222(1-

Here,I is the identity matrix of size 1& 10, and%;; € R0 =1, 2,5 =1, 2 are four
coefficient matrices. We set three of the coefficient magrtoebe known, withZ,; = 31, = 0,
and X5, with the entries listed in Appendix A. The 100 entries of thatrx >,; are treated
as hidden parameters within the domé&ir0.05, 0.051%. The domain of interest for the state
variables is set as-2, 2|?°. With a larger number of missing hidden parameters (conuptare

— True value
« NN prediction

0.12

0.10

0.08

Error

0.06

0.04

time

@ (b)

0.03

Error

0.02

0.01

— True value
NN prediction

-1.00 -0.75 =050 —0.25 0.00 025 0.50 0.75 1.00 0 20 40 60 80 100
X1 time

(©) (d)

FIG. 5: Example 1. Model predictions and errors up:te- 100 withnjy, = 100 andng = 40 using two
sets of arbitrary initial conditions and parameters as ¢n &i (a), (c) phase plot; (b), (d) error.
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Example 1), this problem requires longer memory length tstroict an accurate DNN model.
Memory steps of,; = 100, 300, 500, 700, 900, 1100, 1300, and 1500 are tested.eEhég
indicate then,, = 1300 is sufficient to produce converged prediction restlitie recurrent step
is tested fomr = 1 tong = 5. For this problem, the number of recurrent step does noicied
a noticeable difference in the prediction. We thereforenfix= 1. The DNN model predictions
for long-term integration up t6 = 100 withn; = 1300 andhg = 1 are shown in Fig. 6 for the
state variablep and in Fig. 7 for the state variableg using a set of arbitrarily chosen initial
conditions and hidden parameter values. We observe verg ggreement between the DNN
model predictions and the corresponding reference solsitio

— True value — True value
« NN prediction 2.0 NN prediction

time time

125 — True value — True value
NN prediction + NN prediction

time. time

— True value
125 + NN prediction

-15 — True value
NN prediction

time time

20 — True value
+ NN prediction

— True value
-1.00 + NN prediction

0 20 40 60 80 100 0 20 40 60 80 100
time time

— True value — True value
04 + NN prediction 0.8 NN prediction

time time

FIG. 6: Example 2. Model predictions qf up to¢ = 100 withn; = 1300 andchr = 1.
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0.0 00
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0 20 40 60 80 100 [ 20 40 60 80 100
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1.00
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050
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-04
-050
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FIG. 7: Example 2. Model predictions @f up tot = 100 withn; = 1300 andhg = 1.

4.3 Example 3: CSTR

We now consider a smaller nonlinear system with bifurcabiehavior controlled by the hid-
den parameter. It is a continuous stirred-tank chemicatoe4CSTR) model with a single and
irreversible exothermic reaction. The (unknown) govegréquations are

. T2
1 = —x1+ Da(l — xq) exp (7)
1+
&y = —xp+ BDa(l — 1) eXp(ﬁTzz/y) = B(rz — 22c),
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wherez; is the conversion ang, the temperature, Da the Damkoehler numii2the heat of
reaction 3 the heat transfer coefficient,the activation energy, andg,. the coolant temperature.
The dimensionless Damkoehler number Da plays an impaxémin determining the qualitative
system behavior and will be assumed to be a hidden paramdtether parameters are fixed:
B =22.0, =3.0,y =12.0, andc,. = 0.5.

We restrict the range of the hidden Da number to be withitD% of the value 0.078. This is
an intentional choice, as 3a 0.078 is the critical value at which the system exhibits taiftion
behavior: the system reaches steady state wher D078 and limit cycle state when Da
0.078.

To generate the training data set, we set the domain of Biteyethe state variables to be
(x1,22) € [0.1,1.0] x [0.5,5.5]. The time step is set as¢ = 0.02. Upon conducting numerical
tests, we set the memory steprtgy = 700 and the recurrent stepag, = 1.

We show the DNN trajectory predictions in Fig. 8, with twosset arbitrarily chosen initial
conditions and parameters where trajectories exhibitdgtstate and limit cycle, respectively.
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approximation - approximation
0.32 23
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0.30
21
< 5
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0.26 18
17
0.24
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05 .
0.4
2
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3 10 20 30 40 50 3 10 20 30 40 50
t t
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\1‘“ by 0.0
i
~0.0002 i
! -0.1
~0.0004 -02
1 20 2 oo0® 40 e 0 5 20 B3 EQ E5 40 3 50
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FIG. 8: Example 3. Model predictions up to= 50 with ny; = 700 andng = 1 with two cases of
arbitrarily chosen initial conditions and system paramset@) Case 1t1, (b) Case 1x», (c) Case 2z,
(d) Case 2, (e) Case 1: relative error, (f) Case 2: relative error.
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We observe that the predictions match the reference sokitiery well in both cases. To de-
termine the qualitative behavior of the solutions, we cotepghe amplitude of the solutions
when they reach a stable state over a relatively longer tit@gvalt € [50, 70]. If the trajectory
reaches a steady state, then the amplitude approacheb@®tifjectory becomes periodic, then
its amplitude approaches a constant value. Figure 9 shenantiplitudes of the predictions with
respect to the value of Da, for both andz,. We clearly observe the transition from steady
state to periodic state when Ba0.078. The comparison between the DNN predictions and the
reference true solutions again shows good agreement.

4.4 Example 4: Cell Signaling Cascade

We consider a dynamical system model for the autocrinesigifialing loop. The three-dimensio-
nal state variabléey,, ez, eg,p]T denotes the dimensionless concentrations of the actine ébr
the enzymes. The true (and unknown) governing equations are

delp o I(t) Vmax,l(l — elp) Vma&zelp

a1 + G4€3p Km,]_ + (1 — €1p) Km,Z + €;|_p7

d€2p _ Vmax3€1p(1 — 6Zp) . Vmax,4€2p (24)
dt Knz+(1—e) Kpatezy

desp _ Vmaxseap(l—e€3p)  Vinaxeesp

dt Km,5 + (1 — €3p) Km,G + e3p ’

wherel =1.0,G4 = 0.2 are fixed and the parametéfs, ;, Vinax:,© = 1, ..., 6, are hidden para-
meters, for a total of 12 hidden parameters. For this studyrestrict the hidden parameters to
within £ 10% of their nominal values. The nominal values forfaj}, ;, < = 1, ..., 6, are fixed at
0.2, and forViax1 is 0.5, forVinax2.3.4 are 0.15, forVinaxs is 0.25, and fofVjnaxe is 0.05. The
domain of interest for the state variablg@s1)3.

The training data are constructed by collecting two rangaelected sequences of consec-
utive data entries from 75,000 trajectories, generatedrifpumly distributed random initial
conditions over 300 steps with a time stp = 0.1. In our DNN model, the memory steps are
set asny; = 50 and the recurrent steps ag = 12. The trajectory predictions and the error
plots are shown in Fig. 10, with a set of arbitrary initial ditfons and system parameters. We
observe that the DNN predictions match the reference swisitvery well for up ta = 20.

+— reference P o + reference g et

06 approximation o 06 approximation
05 05
0.4 0.4
03 03
02 | 0.2
0.1 0.1

0.0] s—d—aaaa ——t 00 s—a—a—a—a—ataaa st
0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084 0.086 0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084 0.086

(@) (b)

FIG. 9: Example 3. Solution amplitudes at limiting states with extgo Da number: (a) amplitude of
vs. Da, (b) amplitude of; vs. Da.
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0.925

—— reference
0.900 approximation

0.875
0.850
~0.825
<
0.800
0775
0.750

—— reference 050
0.725 - approximation

0.0 25 50 75 10.0 125 150 175 200
t

(@)

— reference X
090 approximation 0.0020 %

0.0015
§
§0.0010

0.0005

0.0000{ e -

(© (d)

FIG. 10: Example 4. Model predictions and errors ug te 20 withn ; = 50 andnr = 12 using a set of
arbitrary initial conditions and parameters. {a) (b) =2, (c) x3, (d) error.

5. CONCLUSION

We presented a deep learning strategy for modeling unkngwardical systems with hidden
parameters. By incorporating both memory terms in the nwput layer and recurrent terms
in the network loss function computation, the proposed Dhlible to learn the unknown flow
map of the system, by only using trajectory data of the staté@bles. A distinct feature of
the DNN structure is that it is able to model the system witmptetely hidden and unknown
parameters. This can be useful for practical problems, &vh&ny system parameters cannot
be measured. The proposed DNN method thus provides a highiplg approach for learning
unknown dynamical systems.
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APPENDIX A. DETAILS OF EXAMPLE 2

The detailed setting of Example 2:is= (p; q), wherep € R andq € R1° satisfy

{p =Yup+ I+ 212)q, (A1)

q=—I+30)p - 32q.
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Here,I is the identity matrix of size 16« 10, andY;; € R%19 j = 1 2 j = 1,2 are four
coefficient matrices. We set three of the coefficient masrafixed, withx,; = ¥, = 0, and

Yoo x 10°

1500 124 814 —104 -179 —223 -—731 -—189 —400 242
124 836 679 277 197-515 -521 -273 101 301
814 679 1500 651  755-605 —379 -546 -225 223
—104 277 651 1960  720-782 —299 -—775 -180 506
—179 197 755 720 2290-973 518 —191 -604 —369
—223 -515 —605 —782 —973 1290 —400 412 314 —420
—731 —-521 —379 —299 518 —400 1960 68 455 —316
—189 -—273 —546 —775 —-191 412 683 576 —536 —332
—400 101 —225 —180 —-604 314 455 —536 1030 265
242 301 223 506 —369 —420 —316 —-332 265 1090

The 100 entries of the matriX,; are treated as hidden parameters.
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