图书馆订阅: Guest
国际能源材料和化学驱动期刊

每年出版 6 

ISSN 打印: 2150-766X

ISSN 在线: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

ENHANCED REACTIVITY OF ALUMINUM POWDERS BY CAPPING WITH A MODIFIED GLYCIDYL AZIDE POLYMER

卷 15, 册 6, 2016, pp. 481-500
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2017011235
Get accessGet access

摘要

Aluminum powder is a significant component of many energetic formulations for rocket propellants and explosives due to its high combustion enthalpy on both a mass and volumetric basis. The combustion properties of these formulations can be enhanced further through the use of aluminum nanoparticles including shorter ignition delay, shorter burning time, and more complete combustion. High-energy ball milling was used as a method to produce aluminum-functionalized nanoparticles. This method is based on the reaction of the new metallic surface generated by grinding with an organic functionalized compound. In order to enhance the reactivity of aluminum powders coated by organic layers, we replaced the organic functionalized compound with an energetic polymer—glycidyl azide polymer (GAP). To achieve a desirable reactivity of GAP with aluminum particles, GAP plasticizer has been chemically modified by the partial reactions of azide groups on the polymer chain. The modified GAP (GAPm) was grafted onto the aluminum particles by the reactions of acid groups and aluminum in a simultaneous reaction milling. The aluminum particles coated with GAPm were characterized by the Brunauer–Emmett–Teller surface area analysis technique and scanning electron microscopy. Thermal gravimetric and differential thermal analyses were also used to carry out a study on the reactivity of the coated powders. Several different formulations of these coated powders combined with a binder were produced to investigate the influence of energetic capping of nanoparticles on the heat of combustion of these novel solid fuels.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain