图书馆订阅: Guest
国际能源材料和化学驱动期刊

每年出版 6 

ISSN 打印: 2150-766X

ISSN 在线: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

SYNTHESIS AND COMBUSTION CHARACTERISTICS OF NOVEL HIGH-NITROGEN MATERIALS

卷 12, 册 2, 2013, pp. 173-182
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013001360
Get accessGet access

摘要

The synthesis of high-nitrogen energetic materials has been of ongoing interest at the Los Alamos National Laboratory (LANL). We have discovered that high-nitrogen materials can offer interesting performance and sensitivity properties not accessible through conventional energetic materials. For example, some of the high-nitrogen materials developed at LANL have extremely fast burn rates and very low dependence of the burn rate on pressure. Examples of this include 3,6-bis (tetrazol-5ylamino) tetrazine (BTATz) and diaminoazotetrazine N-oxides (DAATOx) materials. In this paper, we will discuss our recent developments in our continuing efforts toward the synthesis of new highnitrogen materials that feature interesting combustion and explosives properties. In particular, we will describe the synthesis of the high-nitrogen materials dinitroazotriazole (DNAT), dinitroazoxytriazole (DNATO), and the corresponding triaminoguanidinium salts (TAGDNAT, TAGDNATO), and present chemical properties such as density, and heat of formation, as well as their sensitivity properties. Thermo-equilibrium calculations (Cheetah code) were used to predict decomposition products as well as propellant and explosives behaviors. Finally, we will present burning rate data for these new materials.

对本文的引用
  1. Tappan Bryce C., Chavez David E., Combustion Properties of Amino‐Substituted Guanidinium 4,4′,5,5′‐Tetranitro‐2,2′‐biimidazolate(N4BIM) Salts, Propellants, Explosives, Pyrotechnics, 40, 1, 2015. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain