图书馆订阅: Guest
医药载体系统评论综述

每年出版 6 

ISSN 打印: 0743-4863

ISSN 在线: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

In Vivo Applications of PEG Liposomes: Unexpected Observations

卷 18, 册 6, 2001, 16 pages
DOI: 10.1615/CritRevTherDrugCarrierSyst.v18.i6.40
Get accessGet access

摘要

Recent studies with PEG liposomes in patients have consistently shown that liposomes can induce side effects (flushing, tightness of the chest). Furthermore, the blood clearance of PEG liposomes was shown to be dose-dependent: at lipid doses lower than 1 mmol/kg, PEG liposomes do not show the long-circulation property but instead are cleared relatively rapidly from the bloodstream. Another remarkable observation was that repeated injections of PEG liposomes led to significant pharmacokinetic changes: the circulatory half-life of a second dose of radiolabeled PEG liposomes dramatically decreased when given from 5 days to up to 4 weeks after a first injection. In these three unexpected phenomena, proteins of the complement system seem to play a key role.Therefore, one has to consider that PEG liposomes are not inert drug-carrying vehicles in vivo. Pharmacological effects can occur, induced solely by using liposomal particles irrespective of the drug content.

对本文的引用
  1. Azzopardi E. A., Ferguson E. L., Thomas D. W., The enhanced permeability retention effect: a new paradigm for drug targeting in infection, Journal of Antimicrobial Chemotherapy, 68, 2, 2013. Crossref

  2. Tosi G, Ruozi B, Badiali L, Bondioli L, Belletti D, Forni F, Vandelli M, Immunonanosystems to CNS Pathologies, in Nanotechnology in Health Care, 2012. Crossref

  3. Cheema Sangeeta K., Gobin Andrea S., Rhea Robyn, Lopez-Berestein Gabriel, Newman Robert A., Mathur Anshu B., Silk fibroin mediated delivery of liposomal emodin to breast cancer cells, International Journal of Pharmaceutics, 341, 1-2, 2007. Crossref

  4. Azzopardi Ernest A., Boyce Dean E., Thomas David W., Dickson William A., Colistin in burn intensive care: Back to the future?, Burns, 39, 1, 2013. Crossref

  5. Ohara Yusuke, Oda Tatsuya, Yamada Keiichi, Hashimoto Shinji, Akashi Yoshimasa, Miyamoto Ryoichi, Kobayashi Akihiko, Fukunaga Kiyoshi, Sasaki Ryoko, Ohkohchi Nobuhiro, Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells, International Journal of Cancer, 131, 10, 2012. Crossref

  6. Martin Francis, Pegylated Liposome Delivery of Chemotherapeutic Agents, in Modified-Release Drug Delivery Technology, Second Edition, 2008. Crossref

  7. Abou Diane S., Thorek Daniel L. J., Ramos Nicholas N., Pinkse Martijn W. H., Wolterbeek Hubert T., Carlin Sean D., Beattie Bradley J., Lewis Jason S., 89Zr-Labeled Paramagnetic Octreotide-Liposomes for PET-MR Imaging of Cancer, Pharmaceutical Research, 30, 3, 2013. Crossref

  8. UNDERWOOD C., VAN EPS A. W., ROSS M. W., LAVERMAN P., VAN BLOOIS L., STORM G., SCHAER T. P., Intravenous technetium-99m labelled PEG-liposomes in horses: A safety and biodistribution study, Equine Veterinary Journal, 44, 2, 2012. Crossref

  9. Tosi Giovanni, Costantino Luca, Ruozi Barbara, Forni Flavio, Vandelli Maria Angela, Polymeric nanoparticles for the drug delivery to the central nervous system, Expert Opinion on Drug Delivery, 5, 2, 2008. Crossref

  10. Schipper Meike L., Iyer Gopal, Koh Ai Leen, Cheng Zhen, Ebenstein Yuval, Aharoni Assaf, Keren Shay, Bentolila Laurent A., Li Jianquing, Rao Jianghong, Chen Xiaoyuan, Banin Uri, Wu Anna M., Sinclair Robert, Weiss Shimon, Gambhir Sanjiv S., Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice, Small, 5, 1, 2009. Crossref

  11. Prokop Ales, Davidson Jeffrey M., Nanovehicular Intracellular Delivery Systems, Journal of Pharmaceutical Sciences, 97, 9, 2008. Crossref

  12. Jiskoot Wim, van Schie Rianne M. F., Carstens Myrra G., Schellekens Huub, Immunological Risk of Injectable Drug Delivery Systems, Pharmaceutical Research, 26, 6, 2009. Crossref

  13. BARRATT G, The artificial cell design: liposomes, in Artificial Cells, Cell Engineering and Therapy, 2007. Crossref

  14. Goins Beth A, Radiolabeled lipid nanoparticles for diagnostic imaging, Expert Opinion on Medical Diagnostics, 2, 7, 2008. Crossref

  15. Woodle Martin C., Lu Patrick Y., Nanoparticles deliver RNAi therapy, Materials Today, 8, 8, 2005. Crossref

  16. Lowe Sean, O'Brien-Simpson Neil M., Connal Luke A., Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates, Polymer Chemistry, 6, 2, 2015. Crossref

  17. Adams Nico, Schubert Ulrich S., Poly(2-oxazolines) in biological and biomedical application contexts, Advanced Drug Delivery Reviews, 59, 15, 2007. Crossref

  18. Agashe H., Lagisetty P., Sahoo K., Bourne D., Grady B., Awasthi V., Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model, Journal of Nanoparticle Research, 13, 6, 2011. Crossref

  19. Moghimi S.M., Szebeni J., Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Progress in Lipid Research, 42, 6, 2003. Crossref

  20. Caron W P, Song G, Kumar P, Rawal S, Zamboni W C, Interpatient Pharmacokinetic and Pharmacodynamic Variability of Carrier-Mediated Anticancer Agents, Clinical Pharmacology & Therapeutics, 91, 5, 2012. Crossref

  21. Zaharoff David A., Rogers Connie J., Hance Kenneth W., Schlom Jeffrey, Greiner John W., Chitosan solution enhances the immunoadjuvant properties of GM-CSF, Vaccine, 25, 52, 2007. Crossref

  22. Laverman Peter, Boerman Otto C, Re: Selective in vitro labeling of white blood cells using 99mTc-labeled liposomes, Nuclear Medicine and Biology, 29, 5, 2002. Crossref

  23. Li Peiyong, Tan Zhonghua, Zhu Yihua, Chen Suyun, Ding Shuli, Zhuang Hongming, Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model, Journal of Controlled Release, 114, 2, 2006. Crossref

  24. Soepenberg O., Sparreboom A., de Jonge M.J.A., Planting A.S.Th., de Heus G., Loos W.J., Hartman C.M., Bowden C., Verweij J., Real-time pharmacokinetics guiding clinical decisions, European Journal of Cancer, 40, 5, 2004. Crossref

  25. Lu Wei, Wan Jin, She Zhenjue, Jiang Xinguo, Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle, Journal of Controlled Release, 118, 1, 2007. Crossref

  26. Calin Manuela, Immunoliposomes for Specific Drug Delivery, in Antibody-Mediated Drug Delivery Systems, 2012. Crossref

  27. Movassaghian Sara, Torchilin Vladimir P., Long-Circulating Therapies for Cancer Treatment, in Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies, 2015. Crossref

  28. Ishida Tatsuhiro, Ichihara Masako, Wang XinYu, Yamamoto Kenji, Kimura Junji, Majima Eiji, Kiwada Hiroshi, Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes, Journal of Controlled Release, 112, 1, 2006. Crossref

  29. Paukner Susanne, Kohl Gudrun, Jalava Katri, Lubitz Werner, Sealed Bacterial Ghosts—Novel Targeting Vehicles for Advanced Drug Delivery of Water-soluble Substances, Journal of Drug Targeting, 11, 3, 2003. Crossref

  30. Abe Hideki, Fujihara Mitsuhiro, Azuma Hiroshi, Ikeda Hisami, Ikebuchi Kenji, Takeoka Shinji, Tsuchida Eishun, Harashima Hideyoshi, Interaction of Hemoglobin Vesicles, a Cellular-Type Artificial Oxygen Carrier, with Human Plasma: Effects on Coagulation, Kallikrein-Kinin, and Complement Systems, Artificial Cells, Blood Substitutes, and Biotechnology, 34, 1, 2006. Crossref

  31. Bissadi G., Weberskirch R., Formation of polyoxazoline-silica nanoparticles via the surface-initiated cationic polymerization of 2-methyl-2-oxazoline, Polymer Chemistry, 7, 32, 2016. Crossref

  32. Azzopardi Ernest A., Conlan R. Steven, Whitaker Iain S., Polymer therapeutics in surgery: the next frontier, Journal of Interdisciplinary Nanomedicine, 1, 1, 2016. Crossref

  33. Bodo Michael, Szebeni Janos, Baranyi Lajos, Savay Sandor, Pearce Frederick J., Alving Carl R., Bünger Rolf, Cerebrovascular Involvement in Liposome—Induced Cardiopulmonary Distress in Pigs, Journal of Liposome Research, 15, 1-2, 2005. Crossref

  34. Yan Xuedong, Scherphof Gerrit L., Kamps Jan A. A. M., Liposome Opsonization, Journal of Liposome Research, 15, 1-2, 2005. Crossref

  35. Yang Yannan, Yu Chengzhong, Advances in silica based nanoparticles for targeted cancer therapy, Nanomedicine: Nanotechnology, Biology and Medicine, 12, 2, 2016. Crossref

  36. Tyson Rachel, Osae Leah, Madden Andrew J., Lucas Andrew T., Zamboni William C., Translation to the Clinic: Preclinical and Clinical Pharmacology Studies of Nanoparticles - The Translational Challenge, in Pharmaceutical Nanotechnology: Innovation and Production, 2016. Crossref

  37. Nagarsenker Mangal Shailesh, Marwah Megha Sunil, Liposomes, in Novel Approaches for Drug Delivery, 2017. Crossref

  38. Constantinescu Iren, Levin Elena, Gyongyossy‐Issa Maria, Liposomes and Blood Cells: A Flow Cytometric Study, Artificial Cells, Blood Substitutes, and Biotechnology, 31, 4, 2003. Crossref

  39. Abe Hideki, Azuma Hiroshi, Yamaguchi Miki, Fujihara Mitsuhiro, Ikeda Hisami, Sakai Hiromi, Takeoka Shinji, Tsuchida Eishun, Effects of Hemoglobin Vesicles, a Liposomal Artificial Oxygen Carrier, on Hematological Responses, Complement and Anaphylactic Reactions in Rats, Artificial Cells, Blood Substitutes, and Biotechnology, 35, 2, 2007. Crossref

  40. Vlasova Maria, Smirin Boris V., Personalized Approach in Nanomedicine, in Recent Advances in Drug Delivery Technology, 2017. Crossref

  41. Vlasova Maria, Smirin Boris V., Personalized Approach in Nanomedicine, in Biomedical Engineering, 2018. Crossref

  42. Schorzman Allison N., Lucas Andrew T., Kagel John R., Zamboni William C., Methods and Study Designs for Characterizing the Pharmacokinetics and Pharmacodynamics of Carrier-Mediated Agents, in Targeted Drug Delivery, 1831, 2018. Crossref

  43. Bourquin Joël, Milosevic Ana, Hauser Daniel, Lehner Roman, Blank Fabian, Petri-Fink Alke, Rothen-Rutishauser Barbara, Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials, Advanced Materials, 30, 19, 2018. Crossref

  44. Phillips William, Goins Beth, Bao Ande, Long-Circulating Liposomes with Attached Diagnostic Moieties: Application for Gamma and MR Imaging, in Multifunctional Pharmaceutical Nanocarriers, 4, 2008. Crossref

  45. Han Hyun Jee, Ekweremadu Chinedu, Patel Nairuti, Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer, Journal of Drug Delivery Science and Technology, 52, 2019. Crossref

  46. Mare Rosario, Da Huining, Fresta Massimo, Cosco Donato, Awasthi Vibhudutta, Anchoring Property of a Novel Hydrophilic Lipopolymer, HDAS-SHP, Post-Inserted in Preformed Liposomes, Nanomaterials, 9, 9, 2019. Crossref

  47. Taguchi Kazuaki, Ogaki Shigeru, Watanabe Hiroshi, Kadowaki Daisuke, Sakai Hiromi, Kobayashi Koichi, Horinouchi Hirohisa, Maruyama Toru, Otagiri Masaki, Fluid Resuscitation with Hemoglobin Vesicles Prevents Escherichia coli Growth via Complement Activation in a Hemorrhagic Shock Rat Model, Journal of Pharmacology and Experimental Therapeutics, 337, 1, 2011. Crossref

  48. Trucillo Paolo, Reverchon Ernesto, Production of PEG-coated liposomes using a continuous supercritical assisted process, The Journal of Supercritical Fluids, 167, 2021. Crossref

  49. Walduck Anna, Sangwan Parveen, Vo Quynh Anh, Ratcliffe Julian, White Jacinta, Muir Benjamin W., Tran Nhiem, Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles, RSC Advances, 10, 55, 2020. Crossref

  50. Petschauer Jennifer S, Madden Andrew J, Kirschbrown Whitney P, Song Gina, Zamboni William C, The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents, Nanomedicine, 10, 3, 2015. Crossref

  51. Metselaar Josbert M., Bruin Peter, de Boer Leo W. T., de Vringer Tom, Snel Cor, Oussoren Christien, Wauben Marca H. M., Crommelin Daan J. A., Storm Gert, Hennink Wim E., A Novel Family of l-Amino Acid-Based Biodegradable Polymer−Lipid Conjugates for the Development of Long-Circulating Liposomes with Effective Drug-Targeting Capacity, Bioconjugate Chemistry, 14, 6, 2003. Crossref

  52. Wei Xue-Qin, Ba Kai, Construction a Long-Circulating Delivery System of Liposomal Curcumin by Coating Albumin, ACS Omega, 5, 27, 2020. Crossref

  53. Gabizon Alberto, Szebeni Janos, Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines, ACS Nano, 14, 7, 2020. Crossref

  54. Sheikholeslami Behjat, Lam Nga Wing, Dua Kamal, Haghi Mehra, Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate, Life Sciences, 300, 2022. Crossref

  55. Lindner Lars H., Eichhorn Martin E., Eibl Hansjoerg, Teichert Nicole, Schmitt-Sody Marcus, Issels Rolf D., Dellian Marc, Novel Temperature-Sensitive Liposomes with Prolonged Circulation Time, Clinical Cancer Research, 10, 6, 2004. Crossref

  56. Lammers Twan, Rizzo Larissa Y., Storm Gert, Kiessling Fabian, Personalized Nanomedicine, Clinical Cancer Research, 18, 18, 2012. Crossref

1322 文章浏览量 47 文章下载 统计数据
1322 文章浏览量 47 下载次数 56 Crossref 引用次数 Google
Scholar
引用次数

相似内容的文章:

Role of Oil Vehicle on Hepatic Cell Proliferation in PCB-Treated Rats Journal of Environmental Pathology, Toxicology and Oncology, Vol.30, 2011, issue 4
Howard P. Glauert, Rodica Petruta Bunaciu, Larry W. Robertson, Eun Y. Lee, Job C. Tharappel, Hans-Joachim Lehmler, Geza G. Bruckner, Brett T. Spear
Advanced Implantable Drug Delivery Systems via Continuous Manufacturing Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 6
Ali Nokhodchi, Mohammed Maniruzzaman
Factors Affecting Drug and Gene Delivery: Effects of Interaction with Blood Components Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.19, 2002, issue 3
Makiya Nishikawa, Mitsuru Hashida, Praneet Opanasopit
Immunomodulating Activity of a b-Glucan Preparation, SCG, Extracted from a Culinary–Medicinal Mushroom, Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae), and Application to Cancer Patients International Journal of Medicinal Mushrooms, Vol.5, 2003, issue 4
Hitoji Yoshida, Noriko N. Miura, Sachiko Nameda, Toshiro Yadomae, Mitsuhiro Nakajima, Yoshiyuki Adachi, Naohito Ohno, Kenshi Yoshida, Toshie Harada
A Path of Novelty from Nanoparticles to Nanobots: Theragnostic Approach for Targeting Cancer Therapy Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.41, 2024, issue 4
Akanksha Sharma, Akhil Khajuria, Gursharanpreet Kaur, Ravi Pratap Barnwal, Gurpal Singh, Hema K. Alajangi, Pradeep K. Jaiswal, Bhawna Khanna, Mohammed Yusuf, Mandip Sachdeva
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain