图书馆订阅: Guest
传热学

每年出版 18 

ISSN 打印: 1064-2285

ISSN 在线: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

NUMERICAL INVESTIGATION OF NATURAL-CONVECTION HEAT TRANSFER CHARACTERISTICS OF Al2O3-WATER NANOFLUID FLOW THROUGH POROUS MEDIA EMBEDDED IN A SQUARE CAVITY

卷 49, 册 8, 2018, pp. 719-745
DOI: 10.1615/HeatTransRes.2018015790
Get accessGet access

摘要

In this study, natural-convection heat transfer characteristics of Al2O3-water nanofluid flow through a homogeneous porous medium embedded in a square cavity with several pairs of heaters and coolers located inside are investigated numerically. The two-dimensional equations governing the nanofluid flow and heat transfer through the porous medium are discretized using Streamline Upwind Petrov-Galerkin (SUPG) based Finite Element Method (FEM). The generalized Darcy-Brinkman-Forchheimer's porous medium model is used in this analysis. The average Nusselt number in the cases of the base fluid without a porous medium, of a nanofluid without a porous medium, and a nanofluid with a porous medium are compared for different Rayleigh numbers. It is found that in the case of the nanofluid with a porous medium the highest value of average Nusselt number was obtained. In addition to this, the effect of the Darcy number and the porosity on the pattern of streamlines and isotherms is investigated. It is also observed that the average Nusselt number increases with increasing Darcy number and decreases with increasing porosity and nanoparticle volume fraction.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain