图书馆订阅: Guest
生物医学工程评论综述™

每年出版 6 

ISSN 打印: 0278-940X

ISSN 在线: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

PMMA Bone Cement in Interventional Oncology

卷 49, 册 1, 2021, pp. 35-50
DOI: 10.1615/CritRevBiomedEng.2021037591
Get accessDownload

摘要

Polymethylmethacrylate (PMMA) bone cement is increasingly being used for percutaneous minimally invasive treatments of patients suffering from bone malignancies. PMMA is composed of a polymeric powder and a monomeric liquid. Once mixed, the polymerization process begins and leads to a viscous fluid that can be injected through a bone trocar. Cement progressively hardens within the bone, leading to a viscoelastic solid material. PMMA interacts with the surrounding cancellous bone through mechanical interlocking via interdigitations in trabecular bone. It can also bond with hardware, such as titanium screws, as it penetrates the macro- and micro-irregularities of the hardware. PMMA itself has no antineoplastic effects but may be used as a stand-alone treatment to provide pain palliation and bone consolidation through mechanical reinforcement, notably in areas with high compression load. It can also be used to reinforce the anchorage of screws in case of a landing zone with poor bone quality due to underlying malignant osteolysis.

参考文献
  1. Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851-7. .

  2. Scales JF, Herschell W. Perspex (methylemthacrylate) in orthopaedics. Br Med J. 1945:245-9. .

  3. Charnley J. The bonding of prostheses to bone by cement. J Bone Joint Surg Br. 1964;46:518-29. .

  4. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166-8. .

  5. Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, Chastanet P, Duquesnoy B, Deramond H. Percutaneous vertebroplasty: State of the art. Radiographics. 1998;18(2):311-20. .

  6. Garnon J, Meylheuc L, Cazzato RL, Dalili D, Koch G, Auloge P, Bayle B, Gangi A. Percutaneous extra-spinal cementoplasty in patients with cancer: A systematic review of procedural details and clinical outcomes. Diagn Interv Imaging. 2019;100(12):743-52. .

  7. He Z, Zhai Q, Hu M, Cao C, Wang J, Yang H, Li B. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. J Orthop Translat. 2014;3(1):1-11. .

  8. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: Filler materials. Spine J. 2005;5(6 Suppl):305S-16S. .

  9. Lai PL, Chen LH, Chen WJ, Chu IM. Chemical and physical properties of bone cement for vertebroplasty. Biomed J. 2013;36(4):162-7. .

  10. Nussbaum DA, Gailloud P, Murphy K. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol. 2004;15(2 Pt 1):121-6. .

  11. Kuehn KD, Ege W, Gopp U. Acrylic bone cements: Composition and properties. Orthop Clin North Am. 2005;36(1):17-28. .

  12. Sa Y, Yang F, Wang Y, Wolke JGC, Jansen JA. Modifications of poly(methyl methacrylate) cement for application in orthopedic surgery. Adv Exp Med Biol. 2018;1078:119-34. .

  13. Donanzam BA, Campos TP, Dalmazio I, Valente ES. Synthesis and characterization of calcium phosphate loaded with Ho-166 and Sm-153: A novel biomaterial for treatment of spine metastases. J Mater Sci Mater Med. 2013;24(12):2873-80. .

  14. Puckett AD, Roberts B, Bu L, Mays JW. Improved orthopaedic bone cement formulations based on rubber toughening. Crit Rev Biomed Eng. 2000;28(3-4):457-61. .

  15. Kolmeder S, Lion A. Characterisation and modelling rheological properties of acrylic bone cement during application. Mech Res Commun. 2013;48:93-99. .

  16. Landgraf R, Ihlemann J, Kolmeder S, Lion A, Lebsack H, Kober C. Modelling and simulation of acrylic bone cement injection and curing within the framework of verte-broplasty. J Appl Math Mech. 2015;95(12):1530-47. .

  17. Borzacchiello A, Ambrosio L, Nicolais L, Harper EJ, Tanner KE, Bonfield W. Comparison between the polymerization behavior of a new bone cement and a commercial one: Modeling and in vitro analysis. J Mater Sci Mater Med. 1998;9(12):835-8. .

  18. Vallo CI. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement. J Biomed Mater Res. 2002;63(5):627-42. .

  19. San Millan Ruiz D, Burkhardt K, Jean B, Muster M, Martin JB, Bouvier J, Fasel JH, Rufenacht DA, Kurt AM. Pathology findings with acrylic implants. Bone. 1999;25(2 Suppl):85S-90S. .

  20. Lewis G. Properties of acrylic bone cement: State of the art review. J Biomed Mater Res. 1997;38(2):155-82. .

  21. Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine. 2003;28(14):1555-9. .

  22. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during verte-broplasty. Bone. 1999;25(2 Suppl):17S-21S. .

  23. Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg. 1984;18(3):261-8. .

  24. Kim YS, Rhim H, Lim HK, Choi D, Lee MW, Park MJ. Coagulation necrosis induced by radiofrequency ablation in the liver: Histopathologic and radiologic review of usual to extremely rare changes. Radiographics. 2011;31(2):377-90. .

  25. Togawa D, Bauer TW, Lieberman IH, Takikawa S. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate. Spine. 2003;28(14):1521-7. .

  26. Roedel B, Clarendon F, Touraine S, Cormier E, Molet-Benhamou L, Le Jean L, Brisse H, Neuenschwander S, Chiras J. Has the percutaneous vertebroplasty a role to prevent progression or local recurrence in spinal metastases of breast cancer? J Neuroradiol. 2015; 42(4):222-8. .

  27. Verlaan JJ, Oner FC, Verbout AJ, Dhert WJ. Temperature elevation after vertebroplasty with polymethylmethacrylate in the goat spine. J Biomed Mater Res B Appl Biomater. 2003;67(1):581-5. .

  28. Anselmetti GC, Manca A, Kanika K, Murphy K, Emine-fendic H, Masala S, Regge D. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: An in vivo study in humans. Cardiovasc Intervent Radiol. 2009;32(3):491-8. .

  29. Urrutia J, Bono CM, Mery P, Rojas C. Early histologic changes following polymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae. Spine. 2008;33(8):877-82. .

  30. Kurup AN, Schmit GD, Atwell TD, Sviggum EB, Castaneda WR, Rose PS, Callstrom MR. Palliative percutaneous cryoablation and cementoplasty of acetabular metastases: Factors affecting pain control and fracture risk. Cardiovasc Intervent Radiol. 2018;41(11):1735-42. .

  31. Wallace AN, Robinson CG, Meyer J, Tran ND, Gangi A, Callstrom MR, Chao ST, Van Tine BA, Morris JM, Bruel BM, Long J, Timmerman RD, Buchowski JM, Jennings JW. The metastatic spine disease multidisciplinary working group algorithms. Oncologist. 2015;20(10):1205-15. .

  32. Kinzl M, Boger A, Zysset PK, Pahr DH. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: A numerical study of interface properties, PMMA shrinkage and trabecular bone damage. J Biomech. 2012;45(8):1478-84. .

  33. Muller SD, Green SM, McCaskie AW. The dynamic volume changes of polymerizing polymethyl methacrylate bone cement. Acta Orthop Scand. 2002;73(6):684-7. .

  34. Zhang ZF, Huang H, Chen S, Liu DH, Feng YH, Xie CL, Jiao F. Comparison of high- and low-viscosity cement in the treatment of vertebral compression fractures: A systematic review and meta-analysis. Medicine. 2018;97(12):e0184. .

  35. Yahyavi-Firouz-Abadi N, Hillen TJ, Jennings JW. Percu-taneous radiofrequency-targeted vertebral augmentation of unstable metastatic C2 and C3 lesions using a CT-guided posterolateral approach and ultra-high-viscosity cement. Spine. 2015;40(8):E510-3. .

  36. Trumm CG, Jakobs TF, Stahl R, Sandner TA, Paprottka PM, Reiser MF, Zech CJ, Hoffmann RT. CT fluoroscopy-guided vertebral augmentation with a radiofrequency-induced, high-viscosity bone cement (StabiliT): Technical results and polymethylmethacrylate leakages in 25 patients. Skeletal Radiol. 2013;42(1):113-20. .

  37. Dunne NJ, Orr JF. Flow characteristics of curing polymethyl methacrylate bone cement. Proc Inst Mech Eng H. 1998;212(3):199-207. .

  38. Smeds S, Goertzen D, Ivarsson I. Influence of temperature and vacuum mixing on bone cement properties. Clin Orthop Relat Res. 1997;(334):326-34. .

  39. James SL, Connell DA. The effect of temperature reduction on cement working time in percutaneous vertebroplasty. Clin Radiol. 2006;61(9):797-9. .

  40. Chavali R, Resijek R, Knight S, Choi I. Extending polymerization time of polymethylmethacrylate cement in percutaneous vertebroplasty with ice bath cooling. AJNR Am J Neuroradiol. 2003;24(3):545-6. .

  41. Kurtz SM, Villarraga ML, Zhao K, Edidin AA. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compres-sion fractures. Biomaterials. 2005;26(17):3699-712. .

  42. James SP, Jasty M, Davies J, Piehler H, Harris WH. A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life. J Biomed Mater Res. 1992;26(5):651-62. .

  43. Oonishi H, Akiyama H, Takemoto M, Kawai T, Yamamoto K, Yamamuro T, Oonishi H, Nakamura T. The long-term in vivo behavior of polymethyl methacrylate bone cement in total hip arthroplasty. Acta Orthop. 2011;82(5):553-8. .

  44. Ries MD, Young E, Al-Marashi L, Goldstein P, Hetherington A, Petrie T, Pruitt L. In vivo behavior of acrylic bone cement in total hip arthroplasty. Biomaterials. 2006;27(2):256-61. .

  45. Fritsch E, Rupp S, Kaltenkirchen N. Does vacuum-mixing improve the fatigue properties of high-viscosity poly(methyl-methacrylate) (PMMA) bone cement? Comparison between two different evacuation methods. Arch Orthop Trauma Surg.1996;115(3-4):131-5. .

  46. Hoey DA, Taylor D. Statistical distribution of the fatigue strength of porous bone cement. Biomaterials. 2009;30(31):6309-17. .

  47. Shardlow DL, Stone MH, Ingham E, Fisher J. Cement particles containing radio-opacifiers stimulate pro-osteolytic cytokine production from a human monocytic cell line. J Bone Joint Surg Br. 2003;85(6):900-5. .

  48. Ling RS, Lee AJ. Porosity reduction in acrylic cement is clinically irrelevant. Clin Orthop Relat Res. 1998;(355):249-53. .

  49. Togawa D, Kovacic JJ, Bauer TW, Reinhardt MK, Brodke DS, Lieberman IH. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: Percutaneous vertebroplasty versus kyphoplasty. Spine. 2006;31(1):E4-10. .

  50. Huang A, Fang S, Wang L, Xu R, Shen J, Zhu G, Miao Y, Zou T. Vertebral collapse and polymethylmethacrylate breakage after vertebroplasty: A case report. Medicine. 2019;98(34):e16831. .

  51. Garnon J, Meylheuc L, De Marini P, Koch G, Cazzato RL, Bayle B, Gangi A. Cement plug fragmentation following percutaneous cementoplasty of the bony pelvis: Is it a frequent finding in clinical practice? Cardiovasc Intervent Radiol. 2021;44(3):421-7. .

  52. Bohner M, Gasser B, Baroud G, Heini P. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Bio-materials. 2003;24(16):2721-30. .

  53. Scheele CB, Pietschmann MF, Schroder C, Lenze F, Grupp TM, Muller PE. Effect of bone density and cement morphology on biomechanical stability of tibial unicom-partmental knee arthroplasty. Knee. 2020;27(2):587-97. .

  54. Silverman EJ, Landy DC, Massel DH, Kaimrajh DN, Latta LL, Robinson RP. The effect of viscosity on cement penetration in total knee arthroplasty, an application of the squeeze film effect. J Arthroplasty. 2014;29(10):2039-42. .

  55. Race A, Mann KA, Edidin AA. Mechanics of bone/PMMA composite structures: An in vitro study of human vertebrae. J Biomech. 2007;40(5):1002-10. .

  56. Skripitz R, Aspenberg P. Attachment of PMMA cement to bone: Force measurements in rats. Biomaterials. 1999;20(4):351-6. .

  57. Janssen D, Mann KA, Verdonschot N. Finite element simulation of cement-bone interface micromechanics: A comparison to experimental results. J Orthop Res. 2009;27(10):1312-8. .

  58. Fahlgren A, Bostrom MP, Yang X, Johansson L, Edlund U, Agholme F, Aspenberg P. Fluid pressure and flow as a cause of bone resorption. Acta Orthop. 2010;81(4):508-16. .

  59. Goodheart JR, Miller MA, Oest ME, Mann KA. Trabecular resorption patterns of cement-bone interlock regions in total knee replacements. J Orthop Res. 2017;35(12):2773-80. .

  60. Garnon J, Jennings JW. Percutaneous consolidation for extraspinal osteolytic lesions: To cementoplasty and beyond. J Vasc Interv Radiol. 2020;31(4):659-60. .

  61. Miller MA, Terbush MJ, Goodheart JR, Izant TH, Mann KA. Increased initial cement-bone interlock correlates with reduced total knee arthroplasty micro-motion following in vivo service. J Biomech. 2014;47(10):2460-6. .

  62. Waanders D, Janssen D, Mann KA, Verdonschot N. The mechanical effects of different levels of cement penetration at the cement-bone interface. J Biomech. 2010;43(6):1167-75. .

  63. Kim SI, Ha KY, Cho YS, Kim KW, Oh IS. Delayed height loss after kyphoplasty in osteoporotic vertebral fracture with severe collapse: Comparison with vertebroplasty. World Neurosurg. 2018;119:e580-8. .

  64. Zhang QH, Cossey A, Tong J. Stress shielding in bone of a bone-cement interface. Med Eng Phys. 2016;38(4):423-6. .

  65. Mohme M, Riethdorf S, Dreimann M, Werner S, Maire CL, Joosse SA, Bludau F, Mueller V, Neves RPL, Stoecklein NH, Lamszus K, Westphal M, Pantel K, Wikman H, Eicker SO. Circulating tumour cell release after cement augmentation of vertebral metastases. Sci Rep. 2017;7(1):7196. .

  66. Lea WB, Neilson JC, King DM, Tutton SM. Minimally invasive stabilization using screws and cement for pelvic metastases: Technical considerations for the pelvic "screw and glue" technique. Semin Intervent Radiol. 2019;36(3):229-40. .

  67. Vallittu PK. A review of methods used to reinforce polymethyl methacrylate resin. J Prosthodont. 1995;4(3):183-7. .

  68. Brown CJ, Sinclair RA, Day A, Hess B, Procter P. An approximate model for cancellous bone screw fixation. Comput Methods Biomech Biomed Engin. 2013;16(4):443-50. .

  69. Liu Y, Xu J, Sun D, Luo F, Zhang Z, Dai F. Biomechanical and finite element analyses of bone cement-injectable cannulated pedicle screw fixation in osteoporotic bone. J Biomed Mater Res B Appl Biomater. 2016 Jul;104(5):960-7. .

  70. Alageel O, Abdallah MN, Luo ZY, Del-Rio-Highsmith J, Cerruti M, Tamimi F. Bonding metals to poly(methyl methacrylate) using aryldiazonium salts. Dent Mater. 2015;31(2):105-14. .

  71. International Standard Organization (ISO). ISO 5833:2002 Implants for surgery-acrylic resin cements. ISO; 2002. .

  72. Hadley C, Awan OA, Zoarski GH. Biomechanics of vertebral bone augmentation. Neuroimaging Clin N Am. 2010;20(2):159-67. .

  73. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. J Biomech. 1999;32(4):437-41. .

  74. Li Z, Butala NB, Etheridge BS, Siegel HJ, Lemons JE, Eberhardt AW. A biomechanical study of periacetabular defects and cement filling. J Biomech Eng. 2007;129(2):129-36. .

  75. Cazzato RL, Palussiere J, Buy X, Denaro V, Santini D, Tonini G, Grasso RF, Zobel BB, Poretti D, Pedicini V, Balzarini L, Lanza E. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: A systematic review. Cardiovasc Intervent Radiol. 2015;38(6):1563-72. .

  76. Auloge P, Cazzato RL, Rousseau C, Caudrelier J, Koch G, Rao P, Chiang JB, Garnon J, Gangi A. Complications of percutaneous bone tumor cryoablation: A 10-year experience. Radiology. 2019;291(2):521-8. .

  77. Husain ZA, Sahgal A, De Salles A, Funaro M, Glover J, Hayashi M, Hiraoka M, Levivier M, Ma L, Martlnez-Alvarez R, Paddick JI, Regis J, Slotman BJ, Ryu S. Stereotactic body radiotherapy for de novo spinal metastases: Systematic review. J Neurosurg Spine. 2017;27(3):295-302. .

  78. Sankey EW, Park C, Howell EP, Pennington Z, Abd-ElBarr M, Karikari IO, Shaffrey CI, Gokaslan ZL, Sciubba D, Goodwin CR. Importance of spinal alignment in primary and metastatic spine tumors. World Neurosurg. 2019;132:118-28. .

  79. Tschirhart CE, Finkelstein JA, Whyne CM. Optimization of tumor volume reduction and cement augmentation in percutaneous vertebroplasty for prophylactic treatment of spinal metastases. J Spinal Disord Tech. 2006;19(8):584-90. .

  80. Huang M, Zhu H, Liu T, Cui D, Huang Y. Comparison of external radiotherapy and percutaneous vertebroplasty for spinal metastasis. Asia Pac J Clin Oncol. 2016;12(2):e201-8. .

  81. Bae JW, Gwak HS, Kim S, Joo J, Shin SH, Yoo H, Lee SH. Percutaneous vertebroplasty for patients with metastatic compression fractures of the thoracolumbar spine: Clinical and radiological factors affecting functional outcomes. Spine J. 2016;16(3):355-64. .

  82. Moser TP, Onate M, Achour K, Freire V. Cementoplasty of pelvic bone metastases: Systematic assessment of lesion filling and other factors that could affect the clinical outcomes. Skeletal Radiol. 2019;48(9):1345-55. .

  83. Butler CL, Given CA 2nd, Michel SJ, Tibbs PA. Percu-taneous sacroplasty for the treatment of sacral insufficiency fractures. AJR Am J Roentgenol. 2005;184(6): 1956-9. .

  84. Chandra V, Wajswol E, Shukla P, Contractor S, Kumar A. Safety and efficacy of sacroplasty for sacral fractures: A systematic review and meta-analysis. J Vasc Interv Radiol. 2019;30(11):1845-54. .

  85. Keller TS, Kosmopoulos V, Lieberman IH. Vertebroplasty and kyphoplasty affect vertebral motion segment stiffness and stress distributions: A microstructural finite-element study. Spine. 2005;30(11):1258-65. .

  86. Chevalier Y, Pahr D, Charlebois M, Heini P, Schneider E, Zysset P. Cement distribution, volume, and compliance in vertebroplasty: Some answers from an anatomy-based nonlinear finite element study. Spine. 2008;33(16): 1722-30. .

  87. Berton A, Salvatore G, Giambini H, Ciuffreda M, Longo UG, Denaro V, Thoreson A. An KN. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae. J Spinal Cord Med. 2020;43(1):39-45. .

  88. Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P. Vertebroplasty: Only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine. 2009;34(26):2865-73. .

  89. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine. 2003;28(14):1549-54. .

  90. Tschirhart CE, Roth SE, Whyne CM. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: Effects of cement distribution patterns and volume. J Biomech. 2005; 38(8):1582-90. .

  91. Hesler MC, Buy X, Catena V, Brouste V, Kind M, Palussiere J, Crombe A. Assessment of risk factors for occurrence or worsening of acetabular fracture following percutaneous cementoplasty of acetabulum malignancies. Eur J Radiol. 2019;120:108694. .

  92. Delpla A, Tselikas L, De Baere T, Laurent S, Mezaib K, Barat M, Nguimbous O, Prudhomme C, Al-Hamar M, Moulin B, Deschamps F. Preventive vertebroplasty for long-term consolidation of vertebral metastases. Cardiovasc Intervent Radiol. 2019;42(12):1726-37. .

  93. Kurup AN, Morris JM, Schmit GD, Atwell TD, Schmitz JJ, Rose PS, Callstrom MR. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol. 2015;26(4):588-94. .

  94. Garnon J, Meylheuc L, Auloge P, Koch G, Dalili D, Cazzato RL, Bayle B, Gangi A. Continuous injection of large volumes of cement through a single 10g vertebroplasty needle in cases of large osteolytic lesions. Cardiovasc Intervent Radiol. 2020;43(4):658-61. .

  95. Roux C, Tselikas L, Yevich S, Sandes Solha R, Hakime A, Teriitehau C, Gravel G, de Baere T, Deschamps F. Fluoroscopy and cone-beam CT-guided fixation by internal cemented screw for pathologic pelvic fractures. Radiology. 2019;290(2):418-25. .

  96. Poussot B, Deschamps F, Varin F, Abed A, Moulin B, Prud'homme C, Al Ahmar M, Teriitehau C, Hakime A, Laurent S, de Baere T, Tselikas L. Percutaneous fixation by internal cemented screws of the sternum. Cardiovasc Intervent Radiol. 2020;43(1):103-9. .

  97. Garnon J, Koch G, Ramamurthy N, Caudrelier J, Rao P, Tsoumakidou G, Cazzato RL, Gangi A. Percutaneous CT and fluoroscopy-guided screw fixation of pathological fractures in the shoulder girdle: Technical report of 3 cases. Cardiovasc Intervent Radiol. 2016;39(9): 1332-8. .

  98. Liu D, Zhang Y, Zhang B, Xie QY, Wang CR, Liu JB, Liao DF, Jiang K, Lei W, Pan XM. Comparison of expansive pedicle screw and polymethylmethacrylate-augmented pedicle screw in osteoporotic sheep lumbar vertebrae: Biomechanical and interfacial evaluations. PLoS One. 2013;8(9):e74827. .

  99. Schulze M, Riesenbeck O, Vordemvenne T, Raschke MJ, Evers J, Hartensuer R, Gehweiler D. Complex bio-mechanical properties of non-augmented and augmented pedicle screws in human vertebrae with reduced bone density. BMC Musculoskelet Disord. 2020;21(1):151. .

  100. Elder BD, Lo SF, Holmes C, Goodwin CR, Kosztowski TA, Lina IA, Locke JE, Witham TF. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015;15(6):1432-45. .

  101. Liu BM, Li M, Yin BS, Zou JY, Zhang WG, Wang SY. Effects of incorporating carboxymethyl chitosan into PMMA bone cement containing methotrexate. PLoS One. 2015;10(12):e0144407. .

  102. Ozben H, Eralp L, Baysal G, Cort A, Sarkalkan N, Ozben T. Cisplatin loaded PMMA: Mechanical properties, surface analysis and effects on Saos-2 cell culture. Acta Orthop Traumatol Turc. 2013;47(3):184-92. .

  103. Liang B, Zuo D, Yu K, Cai X, Qiao B, Deng R, Yang J, Chu L, Deng Z, Zheng Y, Zuo G. Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma. Mater Sci Eng C Mater Biol Appl. 2020;108:110460. .

  104. Tonak M, Becker M, Graf C, Eckhard L, Theobald M, Rommens PM, Wehler TC, Proschek D. HDAC inhibitor-loaded bone cement for advanced local treatment of osteosarcoma and chondrosarcoma. Anticancer Res. 2014;34(11):6459-66. .

  105. Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L, Deng Z. PM-MA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors. Theranostics. 2019;9(14):4192-207. .

对本文的引用
  1. Cazzato Roberto Luigi, Garnon Julien, Dalili Danoob, Autrusseau Pierre-Alexis, Auloge Pierre, De Marini Pierre, Buy Xavier, Palussiere Jean, Gangi Afshin, Percutaneous osteoplasty in long bones: Current status and assessment of outcomes, Techniques in Vascular and Interventional Radiology, 25, 1, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain